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Abstract

We introduce a deep learning-driven framework for creating an adaptably appli-
cable importance map (A2R-Map) that can be integrated with existing image and
video retargeting operators. A conventional retargeting algorithm uses a heuris-
tic approach to seek an off-the-self algorithm used into their retargeting system.
The extracted importance map of the image does not match the characteristics of
the input image; therefore, it affects the retargeting results and limits the perfor-
mance of the retargeting method. Our designed framework attempts to minimize
the artifacts/distortions caused by inappropriate energy, e.g., the shrunk phe-
nomenon in warping-based results and carving-through-object distortion in the
seam carving-based approach. Our proposed framework focuses on capturing sen-
sitive distortion regions and activating their energy to solve this challenge. We
verify the effectiveness of our proposed scheme by plugging it in three typical
retargeting methods: seam carving-based, warping-based for image, and video
retargeting. Extensive experiments and evaluations are conducted on two widely
used databases. On the one hand, A2R-Map significantly reduces the time of
importance map generation in retargeting systems to ∼ 9 times compared to the
baseline saliency map. On the other hand, our A2R-Map achieves improvement
over the baseline methods with an average of 11% and 9% in terms of image and
video quality, respectively. The experimental results and evaluations demonstrate
that our strategy for A2R-Map substantially outperforms the previous works and
significantly boosts the visual quality of video/image retargeting.

Keywords: retargeting, A2R-Map, seam carving, warping

1



1 Introduction

Image and video have long been the widespread media forms in our life. The devel-
opment of media platforms (e.g., Facebook Reel, TikTok, Instagram, Youtube, etc.)
along with the evolution of heterogeneous devices requires the media forms to be well
displayed in different resolutions and aspect ratios. This impulse has made media retar-
geting a more active and attractive research topic in computer vision and computer
graphics during the last decade.

This problem has been explored. The conventional content-aware image/video
retargeting methods [1–7] rely on the visual information of the image/video to define
the importance of the image/video, which should be preserved after retargeting. These
methods obtain the content analysis via existing techniques, e.g., saliency map, gradi-
ent map, depth map, structure map, shadow map, etc. The result after this analysis is
called an “importance map”, in which an importance value is assigned for each pixel.
The important regions of the image must have a higher importance value to be effec-
tively preserved in retargeting process [8]. Usually, a particular method uses a heuristic
to seek an approach that could be integrated into their retargeting system. However,
these methods are not originally designed for retargeting. The extracted importance
map of the image does not match the characteristics of the input image; therefore, it
affects the retargeting results and limits the performance of the retargeting method
[8]. The latest deep learning methods [9–12] can improve the performance in image
retargeting, especially in extracting the importance map of the image. However, it
requires equipment with high computing power and comprehensive datasets. Unfor-
tunately, ideal retargeting results are limited and not available. These inadvertently
become challenges in this research domain. In addition, each category of retargeting
technique has its advantages and limitations. Warping-based methods can produce
smoother results without loss of image information, but the shape of the objects of
the image is shrunk. Since the seam carving algorithm alone could not perform well,
there was a tendency to combine it with other operators such as scaling [8].

Fig. 1 Our proposed framework resolves the shrinking phenomenon in the warping-based
method and carving distortion in the seam carving-based method.

In this paper, we propose a framework to address the above challenges. We aim
to generate an energy map that could be adaptable to seam carving and warping
operators. Our designed framework attempts to minimize the artifacts/distortions
caused by inappropriate energy, as we visualize in Figure 1. The proposed framework
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pays attention to capturing sensitive-to-distortion regions and activating their energy.
Our framework consists of an online learning and an offline refinement stage. The
online stage learns the features of the input image to define the region of the main
object and predict energy for the pixels belonging to such regions. We achieve this
by proposing a neural network model, Triplet-Layer Features Sharing (TFS-Net). The
idea of TFS-Net is that we utilize the annotation of salient object detection to explore
the important region in an image, which can prevent us from distorting these regions.
In the refinement stage, we aim to detect the wrongly predicted energy in the online
stage. We activate the important information in the background, along with correcting
the energy. This refinement produces a fine and proper energy map, which saves the
retargeting results from distortion in the less important regions in the cases where
the image content is dense. With this strategy, our energy map enables retargeting
methods to face various images. To validate the effectiveness of our scheme, we plug
our energy map into the seam carving and warping operators. We test it on image and
video retargeting with various input images/videos. More ideal results are obtained.
We also compare our results to prior methods in retargeting and importance map
generation.

The contributions of our work could be included in the following aspects:

• We develop a framework that effectively defines important maps (A2R-Map) in
image and video retargeting applications.

• Our proposed scheme could be adaptable to seam carving and warping-based
retargeting systems.

• Our A2R-Map substantially outperforms baseline methods, particularly achieving
approximately 11% and 9% improvement over them in terms of image and video
retargeting quality, respectively.

• The ideal retargeting results obtained by our system enable researchers in seeking
the dataset for this research domain.

We organize the remainder of this paper as follows. In section 2, we review the prior
works that are related to our current research. In section 3, the detail of our proposed
framework is described. In section 4, our experimental results and evaluations are
presented. The conclusion and our future work are discussed in the last section.

2 Related work

The conventional techniques for Content-Aware Image Retargeting (CAIR) are prob-
ably categorized into discrete and continuous methods [8, 13]. Most of the resizing
systems in the two categories share the mutual process regarding the importance map
generation. That is, they all analyze the content of the input image to define the criti-
cal regions in advance, which are preserved in the second step of the CAIR procedure.
Each CAIR scheme may integrate with a different importance map extraction method.
In Table 1, we summarize the techniques that the typical CAIR schemes, including
cropping, seam carving, warping, and recent deep learning-based models, use in their
framework. For more works, readers are encouraged to refer the survey article [8].
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Table 1 Overview of existing CAIR methodologies.

Methods References Technique of importance map

Cropping Suh et al. [1], Li and Ling [14], San-
tella et al. [15]

face information [1], SVM [14],
gaze of users [15]

Seam
Carving

Avidan and Shamir [3], Guo et al.
[16], Shen et al. [17], Wu et al. [18],
Choi and Kim [19], Battiato et al. [20]

gradient map [3], saliency + gra-
dient map [16], depth map [17,
18], gradient vector flow [20],
gradient + saliency + depth +
structure maps [19, 21]

Warping Zhang et al. [22], Guo et al. [23], Wang
et al. [24], Zhang et al. [25], Jin et al.
[26], Niu et al. [27], Lin et al. [6], Hu
et al. [28], Panozzo et al. [29], Tan
et al. [30], Kim et al. [31], Kim et al.
[32]

distortion map [22], human body
extraction [23], saliency map [6,
23–32]

Deep
learning
approaches

Liu et al. [33], Guo et al. [34], Song
et al. [35], Lin et al. [12], Wang et al.
[36], Tan et al. [10], Ahmadi et al. [37],
Cho et al. [9], Zhou et al. [38]

Convolution Neural Network

Cropping, a naive technique used in resizing an image, identifies the image’s most
important content to select the cropping window’s location. Researchers in this cat-
egory define the cropping window in various ways, such as semantic information [1],
Support Vector Machine [14], or the gaze of a user looking [15]. For cropping tech-
nique, retargeted results are not distorted or damaged the structure. Yet, they can
only have one cropping window, in the events that images have several salient and
important objects, losing of information outside the cropping window is a negative
side of such cropping schemes.

In the seam carving (SC) algorithm, the importance map plays an essential role
since the SC seeks to find low-energy seams in the image. The pure SC algorithm
[3] defines pixel-energy using the image gradient. Since the gradient map focuses on
the object’s edge, it leads to distortion passing through the objects. Inspired by this,
several works [16–19, 21, 39, 40] subsequently investigate various ways to address the
drawback of the gradient map. They could be saliency map, depth map, structure
map, or combine these maps, as outlined in Table 1. Although these solutions help
improve SC’s performance comparing to the baseline [3], they still have significant
downfalls. The images with background color is close to the color of important regions,
foreground with multiple objects, or dense of background content are challenging to
them.

CAIR methods in the category of the warping-based attempt to minimize the
deformation of regions of high visual importance, while higher deformation is allowed
in regions of low importance [8]. Hence, a proper content analysis method integrated
into such a warping scheme also plays an vital manner. Each work in the warping-
based approach utilizes a different way to construct the importance map of the image.
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Along with distortion map used in the system of Zhang et al. [22], the saliency map
is the most used technique, which is used in most of the warping schemes [6, 23–
32]. Nonetheless, these importance map generation techniques are not designed for
retargeting application. This leads to linear changes in the shape of resizing results,
which are the common drawbacks in these warping-based systems.

Recently, deep learning-based technologies are investigated to explore retargeting
domain [9, 10, 12, 33–38]. These state-of-the-art approaches focus on two sides. They
utilize Convolutional Neural Network (CNN) to define the importance map and then
feed this resulting map to a retargeting operator [35, 37]. On the other side, they
develop a model based on the existing retargeting concept, e.g., warping [9, 10], seam
carving [12], and multi-operator [38]. The advances in deep-learning techniques are
now able to boost the research of analyzing multimedia content [41]. Several applica-
tions benefit from this evolution, for example, classification [42], and object detection
[43]. Inspired by these and the observation of the drawbacks mentioned above in
image/video retargeting applications, in this work, we take advantage of the deep-
learning technique to boost the performance of the existing retargeting methods. In
contrast to prior work in the retargeting domain, our approach is to generate an
energy map that could be adaptable for a particular retargeting method. We con-
sider both background and foreground information in the importance map generation,
which is efficient in avoiding carving distortion in the seam carving-based approach
and shrinking phenomenon in the warping-based system.

3 Methodology

3.1 System overview

Our proposed framework is illustrated in Figure 2, which consists of an online and
offline stages. The system gets as input a color image I and we aim to generate the
corresponding Adapt-to-Retarget importance map (A2R-Map). We also call A2R-Map
in the term “energy map” in our article. The online stage is used to estimate the
energy of the pixels that belong to the most important region in I. For this stage,
we propose a network called Triplet-Layer Feature Sharing (TFS-Net). We train TFS-
Net to automatically produce an energy map, denoted as OMap. The offline stage is a
refinement manner. We first extract edge features in the image I to obtain an energy
map, denoted as BMap. Thereafter, we formulate OMap and BMap to define the final
A2R-Map.

3.2 OMap Generation

We design the TFS-Net to shoulder the task of OMap generation. Our TFS-Net is
configured with two modules, a feature extractor and a feature sharing session, as
illustrated in Figure 2. As named, the first module is to extract the features in the input
image. For this purpose, we use VGG-19 [44] as a backbone. The pre-trained VGG-19
is widely used as the backbone network in many applications, particularly for silent
object detection (SOD) tasks. Therefore, it is reliable to be considered a good feature
extractor. Furthermore, VGG-19 has been trained on the large-scale dataset. With this
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Fig. 2 Our proposed framework of A2R-Map generation.

strategy, we can remove the burden of training for this process. It’s worth noting that
VGG-19 is originally designed for image classification, which is structured by feature
extraction and classification parts. To use it as a backbone, we remove the second
part and only use the first part for feature extraction purposes. In the second module,
the so-called feature sharing session (TFS), we propose to learn feature correlations
extracted from the backbone and formulate them to estimate pixel energy. We note
here that the feature extraction of VGG-19 is designed with 5 layers, structured as
Convolution + ReLu → Max-pooling, and finalized by 3 layers of Fully connected +
Relu. The last 3 layers are used to link the extracted features to the output, rather not
for extracting feature purpose. Hence, we only use the first 5 layers in this backbone.
Given an input color image I in size of H ×W × 3, where H and W are the height
and width, we can obtain five-layer features {Xi|i = 1, . . . , 5} with sizes [H2i ,

W
2i ] from

the backbone network. Feature X1,X2, and X3 with larger sizes are low-level features
with rich object information, X4 and X5 are high-level features with rich semantic
information. Besides, feature X1 brings much computation cost and slight performance
improvement. Therefore, to take the advantage of the features of the layers, we use
the last three-layer features for subsequent processing.

Once the image I is encoded by the backbone, a triplet of the last three-layer
features (X3,X4,X5) is fed to the TFS session. We do not use the features in the first
two layers since they are relatively coarse. The deeper layers capture more high-level
features, which are more beneficial for the resultant energy map in challenging complex
image content. The TFS shoulders the task of learning the feature representation of the
input I, finding their correlation to predict the proper energy of the pixels belonging
to the important region of I. To achieve this, we embed into TFS an Adjacent-layer
Features Sharing (AFS) protocol. To be more specific, AFS is designed to let any two
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adjacent layers share their features. Features of each layer are first convoluted with
a distinct number of filters. They are then concatenated to yield the product feature
maps, denoted by Sl→u. Mathematically, this process is formulated as:

Sl→u = F
(
C3

(
ζ(Xl), k), C

3(Xu, r)
)
, (1)

where F is the concatenation; C3 is operated by a convolution with the kernel size of
3 × 3 operator. We use a 3 × 3 kernel since it has a smaller receptive field compared
to larger kernels. This means it focuses on capturing more local features, which can
be helpful for detecting fine details and edges in the image. Plus, it requires less
computation cost. k and r denote the number of filters of lower Xl and upper Xu

layers, respectively. And ζ indicates the up-sample operator.
As we illustrate in Figure 2, applying AFS protocol on each pair of adjacent layers

yields a product feature maps Si→i−1. The sharing product at layer i is recursively
defined as:

Si→i−1 =

{
γ
(
Si+1→i,Xi−1

)
if i < 5

C1(Xi) if i = 5
, (2)

where γ(.) is the AFS protocol expressed in equation (1); C1 is a convolution 1 × 1.
Thereafter, the products defined by equation (2) are fused together to construct the
final tensor Tc. We finally pass Tc through a 1 × 1 convolution to map it into the
ground truth with an activation function. In the training process, we use a sigmoid
activation function to calculate the probability as an output that has a value in the
range of 0 and 1. All the parameters in our network are learned by minimizing the loss
function, which is computed by the errors between the probability map and ground
truth. Given a ground truth Sg(Sg ∈ 0, 1h×w), which is corresponding to the input
image I (H ×W × C), stochastic gradient descent is employed to minimize the loss
of training to predict visual information probability:

L(Sg,Sp) = −yi × log(ŷi) + (1− yi)× log(1− ŷi), (3)

where Sp is the estimated energy map produced during the training; yi ∈ Sg and
ŷi ∈ Sp. After training TFS-Net with the loss function (3), pixels in the input image
I are predicted as important degree by being assigned an energy value ranging from
[0, . . . , 1]. The higher value indicates the pixel belongs to such an important region. We
call this estimated result an OMap, which is then further formulated in the following
step to define the final importance map.

3.3 A2R-Map Generation

The resultant energy map obtained by the TFS-Net, i.e., OMap, is sufficient to
improve the performance of seam carving-based and warping-based methods in the
game of retargeting. This effectiveness is discussed by the ablated results in Section
4.2. Nevertheless, retargeting is a particular application in which a proper definition
of pixel-wise energy plays an essential role [8]. Since the benchmark dataset of such an
energy map is not available, we utilize the annotation data of salient-object-detection
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to train our TFS-Net. As a result, TFS-Net focuses on the region of the labeled objects
and may skip the objects belonging to the background. Such a resultant energy map
could be good for images that are with simple content, i.e., one object in the fore-
ground and the background is not complex. In the cases that the input images are
with dense backgrounds, this may lead to loss the semantics of the retargeted image,
i.e., some significant pixels are invisible and distorting artifacts occur at these regions.
To overcome these challenges, we further do a refinement based on the initial energy
obtained from TFS-Net (i.e., the OMap). The pseudo-code of this strategy is presented
in Algorithm 1.

Algorithm 1 Algorithm of A2R-Map generation

Input: Color image I
Output: Energy map A2R-Map

1: Train TFS-Net
2: OMap← TFS-Net(I)
3: BMap ←

√
g2x(Bx, I) + g2y(By, I)

4: Put the grid 8× 8 on OMap and BMap
5: W = {NULL}
6: for each pair (wOMap

i , wBMap
i ) do

7: Φi ←
√∑n

k=1

∣∣wB
i − wO

i

∣∣
8: if Φi > η then
9: Add wOMap

i to W
10: end if
11: end for
12: for each wi ∈ W do
13: if d

(
pO(i, j), pB(i, j)

)
> 0 then

14: A2R-Map(i, j) = BMap(i, j)
15: if d

(
pO(i, j), pB(i, j)

)
< 0 then

16: A2R-Map(i, j) = OMap(i, j)
17: end if
18: end if
19: end for
20: Return the energy map A2R-Map.

To begin, we make the edge features of input image I to be visible. An energy map
of this manner is accordingly produced, denoted as BMap, which can be formulated as:

BMap =
√

g2x
(
Bx, I

)
+ g2y

(
By, I

)
, (4)

where Bx, By are the Sobel kernel [45] of horizontal and vertical, respectively. And gx,
gy are the two images which at each point contain the horizontal and vertical derivative
approximations respectively. Thereafter, we base on BMap to adjust the energy in

8



OMap. The reason is that, with equation (4), we make the edge pixels visible and
they are assigned high energy values. Hence, we can treat BMap as a standard map to
allocate the “object” boundary. “Object” here includes both the main objects in the
foreground and the objects in the background. Our adjustment on OMap focuses on
two aspects: (1) detecting the wrongly estimated energy in OMap, and (2) activating
the important information in the background that could be missed in OMap. It is
worth pointing out that this refining strategy is different from combining the two
maps. Combining leads to the wrongly predicted energy in OMap still exists. This
eventually affects the content structure of the retargeting results.

Given two energy images OMap and Bmap corresponding to the input image I,
we simultaneously slide a window w on the two maps. The size of w is set to 8 × 8.
A smaller w leads to higher computation cost, and content in small w not is sufficient
to define the inconsistency. Meanwhile, a larger w spends less cost, but reduces the
accuracy of BMap. We primarily test on different sizes of w and conclude that w-size
in range of 8 to 12 guarantees performance of BMap to be stable with arbitrary image
content. All of experiments in this article, we use w of 8 × 8. Let us denote wO

i and
wB

i as the window capturing OMap and BMap at the iteration i. We then calculate
the distance of pairwise windows as:

Φi =

√√√√ n∑
k=1

∣∣wB
i − wO

i

∣∣, (5)

with n is the total pixel in wi. A large Φi reveals the “inconsistency” between wB
i

and wO
i . “Inconsistency” here refers to the wrongly predicted energy of pixels in wO

i .
For example, we can see the visualization of this phenomenon in Figure 3, highlighted
in green and red squares. It is observed that there is significant difference between
them. At first glance, OMap seems to be good. However, zoom-in each window shows
a significant inconsistency in terms of the spatial location of the input content and
predicted energy. This phenomenon eventually affects the structure of retargeting
results.

Fig. 3 Samples of inconsistent pairs.
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We define the set of patches that encompass of the wrongly-predicted-energy pixels
as:

W = {wk ∈ OMap s.t. Φk > η}, (6)

with η is the threshold we set in our experiment, i.e., η = 50. We note here that the
threshold η linearly varies with the size of window w. As we mentioned above on the
stable range of w, the range of η is recommended in range of [50, . . . , 55]. Once W is
found, we define A2R-Map as:

A2R-Map(i, j) =

{
BMap(i, j) if d(pO(i, j), pB(i, j)) > 0

OMap(i, j) if d(pO(i, j), pB(i, j)) < 0
, (7)

here pO, pB are the pixels belonging to OMap and BMap, respectively. We note here
that the pixel-wise distance d(pO, pB) is used in this equation to define which pixel
could be used to update the corresponding pixel in A2R-Map.

Our above refinement phase encourages the predicted energy in OMap to be con-
sistent with the content in the input I, see Figure 3(e). Besides, it makes the essential
information in the background to be visible. Therefore, our A2R-Map can facilitate
seam carving from carving wrong energy and saving the warping results from the
shrinking effect.

4 Experimental results

In this section, we first present our experimental settings. In Section 4.2, we analyze
how our A2R-Map affects the image and video retargeting performances and discus-
sion via the ablated results. Finally, we show the visual comparisons and apply some
evaluating indicators to evaluate the performance.

4.1 Implementation details

We implemented our system on the PC with Intel Core i7 CPU, 16GB RAM, and
NVIDIA GeForce GTX1070 GPU. The language is used in our importance map gen-
eration is Python 3.6. To generate retargeting results, the seam carving operator is
implemented in Python, and warping-based is computed with C++ programming lan-
guage in Visual Studio 2015. In our TFS-Net network, we use MSRA 10K dataset
[46], which is used for saliency detection, as our training data. This dataset consists of
10000 images with a diversity of the content structure of natural scenes. The dataset
also contains manually annotated ground-truth saliency. In terms of parameters set-
tings for each approach used in our comparisons and evaluations, we summarize in
Table 2.

4.2 Image and Video Retargeting with A2R-Map

Given an image/video As, arbitrary image/video retargeting methods R aim to
generate a target image/video At with the following function:

At = R
(
M(As),P

)
, (8)
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Table 2 Description of parameters in compared methods

Method Description
Baseline warping for image [6] Importance map: Saliency [47] + segmentation [48]
Baseline warping for video [7] Importance map: Saliency [47] + segmentation [48]
Baseline SC [3] Importance map: gradient energy
Patel et al. [49] The same parameter as the source paper [49]
RC map [50] The same parameter as source paper [50]
NIF [16] The same parameter as source paper [16]
BASNet [51], DIS [52], DFI [53] The same parameter as source papers

where P denotes the resizing operator of R; M is an off-the-shelf method that R
uses to define the importance in the input As. As we discuss in the aforementioned
section, we aim to generate an energy map that could be adaptable to an arbitrary
resizing method R and eliminate the artifacts caused by inappropriate energy ofM.
In other words, the method of importance map generation M is alternated by our
A2R-Map in the methods R. In this section, we verify the effectiveness of our proposed
A2R-Map by plugging it into three typical retargeting methods: seam carving-based,
warping-based for image, and video retargeting.

Seam carving-based. We compare the ablated results when integrating seam
carving operator with gradient map, OMap, and A2R-Map in Figure 4. As shown in
this figure, integrating the seam carving operator with different energy maps yields
different results. Using gradient maps results in deformed salient objects since these
maps can only indicate high energy near the edges of an object [16]. The result in
(b) visualizes such distortion. In (c), we can see that the OMap obtained by our
TFS-Net demonstrates its benefit in overcoming the mentioned phenomenon in (b).
However, the wrongly predicted energy in the background pixels causes obvious carving
artifacts in the background. Thanks to the refinement of our approach, our A2R-Map
resolves these phenomena. The result in (d) reveals that A2R-Map serves a better
result compared with the two shown cases.

Fig. 4 Results of seam carving operator using different energy maps.

Warping-based. Here we demonstrate the effectiveness of our A2R-Map in the
warping-based systems for image and video retargeting. We adopt [6] and [7] as the case
study for image and video retargeting, respectively. These two works are mentioned
as good warping schemes. Besides, the source codes are provided by the authors,
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thus they are reliable to use and fair for comparisons. The problem in warping-based
retargeting results is different from those in the seam carving-based approaches, i.e.,
the results are shrunk. The reason is that these warping schemes rely on the saliency
map, adopted from Goferman et al. [47], to estimate the moving factor of quad vertices.
That is, the vertices with high saliency value are assigned a small moving weight. And
vice versa, they are assigned the same scaling weight. As a result, in the case that the
saliency value is not correct, the quad vertices tend to scale linearly.

Fig. 5 A2R-Map with warping-based methods on image and video retargeting.

Fig. 6 Our A2R-Map challenges on the low retargetability images.

Figure 5 visualizes this phenomenon, and we further use the linear scale’s results in
these comparisons. For the image retargeting result (i.e., the first row), by observing
the three results (c)-(e), we can see different energy maps yield different retargeting.
At first glance, the saliency map [47] could be a good partner to integrate with warping
[6, 7]. However, the shape of the car is not preserved well. This effect makes Lin’s
results relatively close to the linear scale. As in our prior discussion, OMap alone is
sufficient to resolve the shrinking issue in such a warping-based system. The result
in (d) demonstrates this effectiveness. Nevertheless, A2R-Map boosts the result more
ideal, i.e., the shape of the car is quite similar to those in the input image. It’s obvious
to see that the result in (e) outperforms the ablated results in (c) and (d). The second
row further demonstrates the benefit of our A2R-Map in terms of video retargeting.
We can observe differences in the region highlighted in yellow. The shape of the girl’s
head is distorted significantly. Similar to the shown case of image retargeting, OMap
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Fig. 7 Comparison on symmetry image with Patel et al. [49].

improves the problem occurring in (c) but is not good as A2R-Map’s performance.
The visualization for videos can be seen at this link1.

4.3 Our results and Discussion

Here we give out more discussion on the capability of our A2R-Map. We test the
images with low retargetability. The data is obtained from [54]. We examine on two
samples shown in Figure 6, one is with medium degree (i.e., retargetability: 0.57) and
one is with a low score (i.e., retargetability: 0.1). Figure 6 shows the plausible results
generated by our system in this manner. As shown in the figure, the shape of the main
object (i.e., the clock) is distorted by deformation in AAD [29] (Figure 6(a)), and the
important regions are cropped (i.e., the hand and the mug in Figure 6(b)). In con-
trast, these phenomena do not occur in our results. These experiments imply that our
method is tolerated low retargetability images. Furthermore, the images with reflec-
tion symmetry are challenging when retargeted by seam carving operator [49]. The
authors in [49] propose a novel method to address this problem. Figure 7 visualizes
the results when our A2R-Map competes with [49] on a sample containing reflection
symmetric objects. The yellow rectangles highlight the differences between results. In
this input image, the head of the zebra contains reflection symmetric attributes. In
this regard, [49] and our A2R-Map are successful in preserving such objects and are
quite better than the gradient map. However, other regions (e.g., the leg of the zebra
or the background on the top-left corner) are distorted in [49]’s result. The compar-
isons in Figure 6 and 7 reveal that our approach is effective with various challenging
input images. This enables the existing retargeting method to have more ideal results.

1http://graphics.csie.ncku.edu.tw/A2RMap/CompareVids.mp4
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Appealing results are also produced. Readers can explore our project website2 for
more experimental results, including image and video retargeting.

Fig. 8 Our A2R-Map and RC map [50] on seam carving and warping operator.

It’s worth hypothesizing that M in equation (8) is another saliency detection
method. That is, instead of plugging our A2R-Map in such video/image retargeting
system R, the method R can choose other M. To justify this hypothesis, we select
four candidates, RC [50] and three SOTA SOD models BASNet [51], DFI [53] and
DIS [52]. RC is a global contrast-based saliency region detector introduced by Cheng
et al. [50]. This method has been mentioned as an efficient importance information
generator in such a retargeting system [32]. Three opted models are good salient object
detection methods used to detect salient objects in many applications. We plug these
four methods in equation (8) and compare their retargeting results against our A2R-
Map. The visual results are exhibited in Figure 8 and 9. The results demonstrate
that our A2R-Map outperforms in all cases. RC seems unsuitable for seam carving
operators since their result has considerable carving distortion. For warping operators,
RC shows its adaptable capability. However, RC still suffers the drawback of “linear-
like” as we discussed above. In terms of SOTA SOD models in Figure 9, since these

2http://graphics.csie.ncku.edu.tw/A2RMap
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Fig. 9 Our A2R-Map competes with SOTA SOD models.

SOD methods are originally designed for object detection, it makes sense to find that
non-labeled-objects (i.e., the flowers) are carved.

4.4 Visual comparisons

To demonstrate that our approach advances prior work in retargeting, we compare
it with five methods. For a thorough and fair comparison, we divide this session into
two groups, seam carving-based approach and warping-based one. In the first group,
three methods [16, 21, 35] are compared. The mutual point in these methods is that
they attempt to produce an importance map that could resolve the distortion in the
seam carving operator. They approach this problem differently, combining different
image features [16, 21] or modeling a neural network [35]. In terms of warping, two
deep learning-based techniques investigated in recent years [9, 10] are compared.

Figures A2, A1, and A3 demonstrate the comparisons in terms of seam carving
operator. NIF [16] considers texture information together with color information to
construct an effective energy map. To achieve this, Guo et al. [16] combine the gra-
dient map and a saliency map. However, in the cases that the background is more
inhormogenous than the important areas, their algorithm fails. Figure A2 visualizes
such cases and their results. Also shown in this figure, our energy map A2R-Map esti-
mates the importance map better than NIF’s. As a result, our retargeting result is
quite better NIF’s result and without any distortion. In Figure A1, although [21] com-
bine various image features to define the energy map for seam carving operator, their
performance in this example is not good as ours. For example, they perform well in
the region of the butterfly, the left and right side of the image, but some noticeable
distortion on the body of the tree makes their retargeted result is not as ideal as ours.
CarvingNet [35] is mentioned as the earliest work that investigates a neural network
to generate the importance map to improve seam carving-based method. Figure A3 is
the visual comparison between our results and theirs. In this challenging case, i.e., the
content in the input image is quite complex, CarvingNet creates obvious distortion at
the building and the tree (highlighted in yellow rectangles). Meanwhile, our A2R-Map
performs better, i.e., there does not exist noticeable distortion and the shape of the
heart-shaped balloon is not significantly scaled down as in CarvingNet.
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Figures A4 and A5 visualize the comparisons in terms of warping-based methods.
As shown in the results, both WSSDCNN [9] and Cycle-IR [10] share the same draw-
back of preserving the structure of the input image in the warping session of their
network. Their results are good in the structure of the bird or the house, but the
background contents are damaged (see highlighted region in both cases). However,
our results are quite better in this competition. For more comparisons, readers are
encouraged to explore the Appendix and our project website.

4.5 Objective evaluation

To quantitatively evaluate our method’s performance, we first adopt two metrics, ARS
[55] and Sift-Flow [56]. ARS algorithm is a metric that evaluates the visual quality
of retargeted images by exploiting the local block changes with a visual importance
pooling strategy. We use this metric to evaluate the distortion degree of our results
comparing to the corresponding input image. For the Sift-flow, we use it to estimate
dense correspondence between the original and retargeted images in term of image
content preservation. In both metrics, the higher is better. In our evaluation session,
we use RetargetMe database [57] as the benchmark data. We compare the two metrics
on the results generated by five methods: SC + Gradient map, SC + A2R-Map, Warp
+ Saliency map [47], Warp + A2R-Map, and Cycle-IR [10]. We note here that the
abbreviations SC and Warp refer to seam carving operator [3] and warping operator
[6]. The visual results of this session can be found in our project website. The anal-
ysis results on two metrics are presented in Table 3. The analysis results reveal that
our A2R-Map can generate results with less distortion than other competitors. This
advantage is demonstrated by the higher ARS score, approximately 11% on average.
In term of Sift-flow score, Cycle-IR is higher than ours when our A2R-Map integrates
with SC; but A2R-Map+Warp has a relatively comparable effectiveness with Cycle-IR
in this manner.

Table 3 Retargeting quality analysis

Warp A2R+Warp SC A2R+SC Cycle-IR
Metrics ARS Sift-flow ARS Sift-flow ARS Sift-flow ARS Sift-flow ARS Sift-flow
Avg. 0.82 0.64 0.92 0.69 0.77 0.61 0.85 0.72 0.89 0.79

Table 4 Analysis on processing time on different resolutions of input
images/video frames (Unit: second)

Resolutions Saliency map [47] Gradient map Our OMap A2R-Map
1024 × 813 40.17 1.25 0.72 3.49
720 × 480 23.52 0.86 0.69 1.52

A part from above metrics, we further adopt the bidirectional similarity measure
(BSM) [58] to evaluate the quality of retargeted images and videos. Simakov et al. [58]
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investigate BSM to describe the coherence and completeness between input and output
images. It is widely used for quantitative analysis retargeting results in several works.
For this metric, we conduct evaluations on two groups. On the first group, we use
seam carving operator integating with different ways for energy map generation. Three
SOTA models BAS [51], DFI [53], DIS [52], and our A2R-Map join in this competition.
Given a pair of images (As,At), the source image As and the corresponding resized
one At, the error of At over As is expressed as:

BSM(As,At) =
1

N

( ∑
p⊂At

min
q⊂At

δ(p, q) +
∑
q⊂As

min
p⊂As

δ(q, p)

)
, (9)

where N is the total patches on As and At; δ(.) is defined by sum of squared dis-
tance of two patches p and q. The lower BSM represents better retargeting quality.
In this group, we examine on two benchmark datasets, RetargetMe [57] and NRID
[59], which consists of 80 and 35 images, respectively. The analysis results are pre-
sented in Figure 10-(a). We can see that using the importance map generated by SOD
models, e.g., BAS, DIS, and DFI, yields relatively identical effect with gradient-based
energy via the light differences in score. Yet, SC combines with our A2R-Map serves
better performance with lower BSM scores. All of our competitors perform better on
NRID dataset than on RetargetMe, this is contrast to ours. However, our scores on
two datasets lower than compared models. This analysis reveals that using such an
SOD model to define pixel energy in seam carving-based systems is challenging. Aver-
aging on two datasets, using our A2R-Map improves approximately 15% comparing
the usage of the alternatives in this analysis.

On the second group, we evaluate quality of retargeted videos. As the ground truth
for video retargeting is not available, we elaborate as follows. Given a video with n
frames, we have two sets: a set of the source video frames Ss = {As

i , . . . ,As
n} and the

other is those in retargeted form St = {At
i, . . . ,At

n}. For each pair of frames (As
i ,At

i),
we apply equation (9) to define the error of frame At

i over frame As
i . Afterwards, we

measure the error degree of a retargeted video as:

Vbsm =
1

n

n∑
i=1

BSM(As
i ,At

i). (10)

Fig. 10 Analysis on BSM metric on image (a) and video (b).
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In this evaluation, we conducted on 9 videos (exhibited on our project website) that
have diverse content, e.g., single-moving object, multiple-moving objects, complex
backgrounds, or important content distributed in the entire frame. Figure 10-(b)
presents the analysis result. It’s can be seen that our A2R-Map boosts the quality of
videos better than the conventional warping system in all of 9 videos. The scores in
videos “Driving” and “Dancing” are relatively close to the compared method. How-
ever, the average score of our opponent is 3.42, meanwhile ours is 3.078 which is
approximately 9% improvement of video retaregting quality.

4.6 Timing analysis

To analyze the processing time, we conducted all experiments on a PC with Intel
Core i7 2.5GHz, 16GB RAM. The comparison on energy map generation process is
presented in Table 4. The saliency map [47] is implemented by Matlab, the gradient
map, our OMap and A2R-Map are implemented by Python 3.6. As reported, saliency
map generation [47] takes a huge computation time. Gradient map is faster than ours.
However, the offset between our timing and gradient map is not significant. This is a
trace-off between the processing time and the better quality results.

4.7 Limitations

Although our proposed A2R-Map substantially minimizes the distortions in prior
retargeting work, it is still not good in some cases when playing with the seam carving
operator. We show an example in Figure 11. It is because of lacking the dataset we use
to train, and the OMap is not good in such cases. As a result, our calculation in the
refinement manner is not efficient. Yet, we can see that the results are still plausible
with the warping operator.

5 Conclusions

This paper introduces a learning-based framework for importance map generation that
is particularly useful in image and video retargeting applications. The core contribu-
tion of our work is (1) the effectiveness in minimizing the distortion in seam carving
operator and shrinking phenomenon in mesh-based warping systems, and (2) enabling
the existing resizing operators to challenge various input content images. Our results
and comparisons show that the proposed approach substantially outperforms related
methods. Furthermore, the experimental results on the low retargetability images
and challenging cases are the evidence that reveals the effectiveness of our scheme in
retargeting. In our future work, we plan to improve the dataset to alleviate the limita-
tions of this study. Furthermore, given A2R-Map’s impressive capabilities in analyzing
image and video content, there is potential for us to expand its usage into exploring
a novel image and video retargeting system. That is, utilizing A2R-Map to analyze
image/video content, then integrating with a diffusion-based technique for resizing
manner.

18



Acknowledgments

This work was supported in part by the National Science and Technology Council
(under nos. 111-2221-E-006-112-MY3, 110-2221-E-006-135-MY3, 112-2221-E-019-063-
MY3 and 110-2221-E-019-052-MY3), Republic of China (ROC), Taiwan. And this
work is also supported by National Natural Science Foundation of China under Nos.
U20B2070 and 61832016.
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Table 5 List of notations

Symbol Definition
I Input image
SC Seam carving operator

OMap The energy map generated by TFS-Net
BMap The energy map generated by equation (4)

A2R-Map The final importance map generated by our model
SOD Salient Object Detection

TFS-Net The network we proposed to generate OMap
TFS Feature Sharing Session module
AFS Adjacent-layer Feature Sharing module

X i Feature maps at layer ith

Xu Feature maps at upper layer
Xl Feature maps at lower layer
As The source image/video in general
At The target image/video As after retargeting process
P A certain resizing operator
R A retargeting system using operator P to resize As and output At

M An off-the-shelf method that R uses to define the importance in the input As
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Appendix A More comparisons

Apart from the comparisons with content-aware retargeting approaches, we further
exhibit our results competing with a semantic-aware retargeting approach [60] in
Figure A6. In this figure, besides [60] (PM), we further show the results from other
five retargeting methods: seam carving (SC) [3] and its improved version (ISC) [61],
patch-based warping (PW) [6], saliency-based mesh parametrization (SMP) [23],
multi-operator (MOR) [4]. These results are obtained from [60]. We can observe that
our result outperforms the compared results. If the carving distortions occur in SC,
ISC, and SMP, a linear-like phenomenon falls in PW, MOR, and PM (e.g., the green
door). Meanwhile, our result does not have such phenomena and appears in a bal-
anced structure compared to the input image. Figure A7 exhibits the performance of
our A2R-Map in terms of enlarging. In this experiment, we enlarge images to 25% of
width.

Fig. A1 Comparison with Multi-operator and Cui et al. [21].

Fig. A2 Left to right: input image, NIF energy map, SC + NIF, A2R-Map, SC + A2R-Map.
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Fig. A3 Comparison with CarvingNet.

Fig. A4 Comparison with WSSDCNN.

Fig. A5 Comparison with Cycle-IR.
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