
https://doi.org/10.1007/s11042-022-12251-1

Learning a perceptual manifold with deep features
for animation video resequencing

Charles C. Morace1 · Thi-Ngoc-Hanh Le1 · Sheng-Yi Yao1 · Shang-Wei Zhang1 ·
Tong-Yee Lee1

Received: 25 January 2021 / Revised: 4 June 2021 / Accepted: 14 January 2022

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
We propose a novel deep learning framework for animation video resequencing. Our sys-
tem produces new video sequences by minimizing a perceptual distance of images from an
existing animation video clip. To measure perceptual distance, we utilize the activations of
convolutional neural networks and learn a perceptual distance by training these features on a
small network with data comprised of human perceptual judgments. We show that with this
perceptual metric and graph-based manifold learning techniques, our framework can pro-
duce new smooth and visually appealing animation video results for a variety of animation
video styles. In contrast to previous work on animation video resequencing, the proposed
framework applies to wide range of image styles and does not require hand-crafted feature
extraction, background subtraction, or feature correspondence. In addition, we also show
that our framework has applications to appealingly arrange unordered collections of images.

Keywords Deep learning · Deep features · Manifold learning ·
Animation video resequencing

1 Introduction

From its beginnings, animation has brought to life the creative potential of the human mind.
It has developed into a dominant visual storytelling tool, and today there exists a wealth
of archived animation video sequences created with both traditional and modern computer
animation techniques. The visual style of animation video sequences is diverse, from stop-
motion and three-dimensional photo-realistic renderings to cartoon illustrations and line-
sketches. Although many techniques have been developed to ease the computer animation
pipeline, production is still an arduous process, in large part to the complexity of digital
characters, environments, and motion. The goal of this paper is to regenerate new video
resequence for general and diverse animation video source. Animators can efficiently and

� Tong-Yee Lee
tonylee@mail.ncku.edu.tw

1 Department of Computer Science and Information Engineering, National Cheng-Kung University,
Tainan City, Taiwan, Republic of China

Published online: 18 March 2022

Multimedia Tools and Applications (2022) 81:23687–23707

/

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-022-12251-1&domain=pdf
mailto: tonylee@mail.ncku.edu.tw


interactively regenerate new animations according to their desire. Therefore, it reduces the
complexity and timing/expense cost in creating animations.

Previous works on animation resequencing [5, 31, 32] have focused on hand-craft feature
extraction techniques to measure texture and shape similarity for a cartoon style animation
and require background subtraction, segmentation, and other image processing techniques.
Motivated by this, we propose a framework for animation video resequencing which can be
applied to a broader range of image styles and does not require hand-craft feature extrac-
tion, background subtraction, or feature correspondence. Given the abundance of animation
data which is currently available, our proposed resequencing framework generates new
animations from an existing animation video clips.

The proposed framework learns a topological manifold of images where paths on the
manifold represent smooth and visually plausible animation video frame sequences. To
demonstrate our proposed framework to be general enough to handle a variety of anima-
tion video styles as source data, including photorealistic, non-photorealistic, styzied, and
line-sketches we experimentally evaluate our method using different kinds of image and
animation data. Also, given selected key-frames, our animation video resequencing method
can create smooth and appealing user-controlled animation video.

In this paper, we utilize the activations of deep convolutional neural networks for smooth
image sequencing and animation video resequencing. Given a pre-trained CNN and selected
activation layers, we learn a perceptual similarity metric which reflects the perceptual
judgments of humans. Then, from a collection of images and their pair-wise perceptual dis-
tances, we generate smooth new animation video sequences by traversing paths and cycles
in an estimated perceptual manifold (as shown in Fig. 1). To the best of our knowledge, we
are the first to apply deep features to the problem of animation video resequencing. Our
technical contributions can be summarized in the following issues:

• We combine deep feature extraction and a perceptual similarity metric with a graph-
based manifold learning technique to generate new and smooth animation video
sequences.

Fig. 1 An example of the manifold topology and two animation video resequences generated from a
collection of unordered animation images with the proposed method

23688 Multimedia Tools and Applications (2022) 81:23687–23707



• We implement our method with two well-known deep learning architectures, VGG [26],
and AlexNet [14], and perform an experimental evaluation of the deep features learned
by these architectures.

• We give a quantitative comparison of our animation video resequencing results with
other image similarity metrics including L2 distance in image space, L2 distance of the
bottleneck layer activations of a denoising autoencoder [29], and results obtained by
traditional manifold learning techniques, locally Linear Embedding [20] and Isomap
[28].

• We demonstrate that our method can facilitate several applications such as creating
image layouts and video synthesis.

• To the best of our knowledge, this is the first work that shows our framework can
generally handle different kinds of animation styles without extra efforts on different
data.

We organize the remainder of this paper as follows. In Section 2, most previous research
in this sequencing domain are reviewed. In Section 3, we introduce the overview of our
proposed system. In Section 4, the methods used in our system are described. In Section
5, our experimental results and evaluations are presented and our additional applications
follow. The conclusions and our future work are presented in the last section.

2 Related work

Smooth image sequencing is the key to producing a visually pleasing animation video. Most
previous research divides this sequencing problem into two distinct steps. The first step is
to establish a suitable distance measure for the similarity between the input images. The
second step is to determine an optimal sequence according to the similarity measure defined
in the first step. While the earliest work [24] used simple L2 distance in the original image
space as a similarity measure, more recent works have focused on feature extraction and
dimension reduction techniques to measure higher-level features of shape [17], appearance
[6], pose [19], and motion [8].

In the proposed method, we use the activations of deep convolutional neural networks for
feature extraction and a metric inspired by the Learned Perceptual Image Patch Similarity
(LPIPS) metric proposed by [33] to measure the perceptual distance of images. Although
PSNR and SSIM [9] are mentioned as a well-known perceptual metrics, they are widely
used to measure the similarity between two images. The goal of our work is to learn a
“perceptual manifold” with deep features, LPIPS metric is suitable for perceptual similarity
across deep visual representations [33].

2.1 Feature extraction and non-linear dimension reduction

Patch2Vec [6] proposed a novel learning framework for image patch embedding, where an
embedding is learned so that L2 distance in the embedding space provides a useful measure
for high-level features of texture dissimilarity. They trained a convolutional neural network
(CNN), using a segmentation dataset and triplet loss function to map image patches having
the same texture to points which are nearby in the embedding space while mapping image
patches having other textures as far away as possible. The proposed method takes a similar
approach by using deep convolutional networks to extract an optimal set of image features.

23689Multimedia Tools and Applications (2022) 81:23687–23707



However, instead of learning a perceptual metric with a triplet loss, we use the LPIPS metric
trained on perceptual judgments of humans.

Osadchy et al. [19] proposed a view-independent Energy-Based Model that simultane-
ously detects faces and estimates head pose. They train a CNN to map images containing
faces to points on a lower-dimensional face-manifold. After training, if the CNN maps an
image to a point close to the manifold then its pitch, roll, and yaw are estimated by the posi-
tion of the point projection onto the manifold. However, for general animation sequencing,
there does not have a related energy-based model since the motion of a variety of characters
and scenes must be estimated.

Holden et al. [8] used a convolutional autoencoder for learning a manifold of human
motion. They trained their proposed CNN with a motion capture data consisting of time-
series of human-poses, and each convolution layer of the CNN performs one-dimensional
convolution over the temporal domain. Since their CNN is trained using motion capture
data, it is not suitable for feature extraction of images.

In term of image synthesis, [3] developed a model for photographic image synthesis
from pixelwise semantic layout. With their proposed method, they showed that photo-
graphic image can be synthesized from semantic layouts by a single feedforward network.
Liu et al. [18] proposed new type of residual blocks an improved U-net to synthesize
the photographic images. However, residual encoder-decoder networks may suffer from
checkerboard artifacts.

Yu et al. [30, 31] described methods for cartoon retrieval and clip synthesis using a
multi-feature distance function and a partially user-labeled database of cartoon characters to
construct a lower dimensional feature space with a sparse transfer learning technique. Car-
toon Textures [5] proposed a feature-distance based on the shape [10], appearance, and the
temporal ordering of an input cartoon sequence, and then utilize the manifold learning tech-
nique Spatio-Temporal Isomap (ST-Isomap) to recover a lower-dimensional embedding of
the input. Unlike the proposed method, ST-Isomap requires an initial ordering for the input
images and thus does not apply to unordered collections of images. Moreover, ST-Isomap,
and traditional manifold learning techniques like Locally Linear Embedding (LLE) [20] and
Laplacian Eigen Maps (LEM) [2] required predetermined parameters including the dimen-
sion of the manifold and the number of neighbors of each input image. These parameters
require fine-tuning for each collection of input images. Cartoon Textures [5] and the meth-
ods proposed by [30, 31] all use hand-crafted feature-extraction methods specific to cartoon
images and require much preprocessing including segmentation of a character and pair-
wise computation of the Hausdorff distance. Furthermore, the Cartoon Textures [5] method
relied on knowledge of the ordering of the original input sequence and the methods of [30,
31] required user labeled data to construct the embedding to measure image similarity. In
contrast, the method proposed in this paper, requires no user-labeling, no segmentation, and
works with a variety of image styles.

2.2 Sequential ordering of images

Determining a sequential ordering of images is usually posed as a path-finding problem in
a weighted graph, where nodes correspond to images and transition costs are based on the
image dissimilarity measure and possibly other criteria such as path smoothness, temporal
ordering of the input sequence, or user-control. Previous work considers transition costs in
complete graphs and nearest neighbor graphs.

Video textures [24] is a video-based rendering technique. They apply Q-learning [12] to
generate a video sequence of arbitrary length with similar dynamics to the input video. The

23690 Multimedia Tools and Applications (2022) 81:23687–23707



method produces convincing results when the input video has repetitive motion or unstruc-
tured stochastic motion but will fail for complex structured motion like full body human
motion. This limitation is a consequence of usingL2 distance on the raw pixels of the images
which cannot sufficiently measure similarity in high-level features of motion. To ameliorate
this issue, Shödl and Essa [22, 23] trained a linear binary-classifier from manually labeled
training data based on six hand-crafted features. Images deemed unacceptable by the linear
classifier are not considered for transitions, and for the other images, the similarity measure
is the linear classifying function. Shödl and Essa [22] applied a beam-search technique to
obtain the optimal sequence. To improve the sequencing results of their beam search, Shödl
and Essa [23] considered the temporal information of the original input sequence in the
transition cost and adopt a greedy hill-climbing optimization, which starts with a random
image sequence and iteratively changes subsequences which lower the total path cost. Con-
trast to these previous methods, our method applies to unordered and unlabeled collections
of images.

Unlike the previously discussed techniques which sequence photo-realistic images, Car-
toon textures [5] and the works by [30, 31] synthesize cartoon animations. Yu et al. [30]
used a greedy method, choosing a random cartoon image as the first frame, and then choos-
ing the most similar image, measured in the low dimensional subspace, for each subsequent
frame. Cartoon Textures and [31] synthesized new animations by finding the shortest paths
in a graph constructed by the ST-Isomap and Isomap manifold learning algorithms, respec-
tively. It is important to note that traditional manifold learning algorithms such as ST-Isomap
and Isomap do not construct the graph automatically and require defined neighbor relations
for the input data and the dimension of the embeddings beforehand, which is difficult to
estimate. In our framework, we do not compute an explicit embedding and can adapt to
different CNN architectures. Also, we automatically determined neighbor relations by min-
imizing the perceptual distance of the input data. Therefore, our method does not require
fine-tuning for each input collection like traditional manifold learning techniques.

3 System overview

We outline the system overview of our proposed framework in Fig. 2. The input to our
system is a collection of unordered images and a pre-trained CNN network F . The input
collection could be from an unstructured collection of images or an existing video. In the
cases that they are from an unstructured collection, we resize them to the same size before
feeding them to the system. The CNN serves as an image feature extractor, and we learn a
“perceptual distance” by training another neural network G on a dataset comprised of per-
ceptual judgments of humans. In our implementation, we test the activations of AlexNet and
VGG trained for image classification. However, features extracted by other CNNs trained
for tasks other than classification are also useful for measuring perceptual distance [33]
and could be incorporated into our system. So, after extracting the deep features from each
image, we compute the pairwise perceptual distance of each image in the input collec-
tion using the LPIPS metric proposed by [33]. Once the perceptual distance is learned, the
proposed system can create:

• a path sequence which uses all images in the collection given start and terminal frames;
• a cycle animation which uses all or some subset of images in the collection;
• or a path animation with smooth in-between images given a set of key-frames.

23691Multimedia Tools and Applications (2022) 81:23687–23707



Fig. 2 System overview of the proposed method

For some collections of images, it may not be possible to obtain a smooth animation
sequence using every image in the collection. For input collections obtained from densely
sampled videos, we can assume there exists at least one smooth sequence which uses all
images in the input collection, i.e., the original animation. However, if the images come
from sparsely sampling an existing animation video or from an unordered collection of
images, it may not be possible to resequence all of the images into a smooth sequence.
Therefore, we also detect and prune outliner images from the input collection by fitting
the perceptual distance of nearest neighbors to an optimal probability distribution using
maximum likelihood estimation.

Then, from the pairwise perceptual distances, we construct a complete graph where each
image corresponds to a node, and the weight of each edge is equal to the perceptual dis-
tance of adjacent images. To generate an optimal animation sequence through all of the
input images, we compute the shortest Hamiltonian path from starting, and terminal frames
assigned by the user or generate a looping animation by computing shortest tours. In key-
frame path finding, we compute a minimal spanning tree (MST) of the complete graph and
generate animation sequences by traversing paths in the MST. Figure 2 shows an overview
of the system.

Section 4.1 describes the feature extraction details, Section 4.2 describes the procedure
for computing perceptual distance, Section 4.3 describes the method for automatic outliner
detection and removal, and Section 4.4 describes animation resequencing.

4 Method

4.1 Deep feature extraction

To compute the perceptual distance, we first extract features with a trained convolutional
neural network (CNN) F . Image features for an image xi ∈ X are a set of activations,
{ŷl

i ∈ R
wlhlcl }Ll=1, obtained from the activations of selected layers after applying the image

xi to the CNN F , where L is the total number of selected activation layers, and wl , hl , and

23692 Multimedia Tools and Applications (2022) 81:23687–23707



cl are the dimensions of a selected activation layer l’s output. Thus, the size of features and
the speed at which that are extracted depends on the architecture of the network architecture
of F .

In our implementation, we test two off-the-shelf networks, namely, VGG [26] and
AlexNet [14]. Both two networks are trained on ImageNet dataset [21] and have excellent
performance in image classification, object detection, etc. Besides, there are several deep
learning-based studies in this problem domain adopting them to extract features in their sys-
tem. Thus, these two pre-trained networks are suitable to adequately extract features from
images. In each backbone, we remove the later layers, fully connected, and utilize the first
five activation layers as feature extractors. While VGG and AlexNet are trained for classifi-
cation of natural images, our experimental results show that their activations are also useful
for re-sequencing non-photorealistic image styles used in animation.

4.2 Perceptual distance

In this section, we briefly summarize the perceptual distance used for generating animation
sequences. Once images are encoded into feature space by the network F , we adopt LPIPS
metric proposed by [33] to learn the perceptual distance of images from their features. The
procedure of this algorithm is presented in pseudocode shown in Algorithm 1. Given a
trained convolutional network F and two images xi and xj , we extract the activations from
L selected layers and unit-normalize in the channel dimension to obtain features ŷl

i and ŷl
j

for each selected layer l ∈ {1, . . . , L}. To compute the perceptual distance d(xi, xj ), we
scale the difference of activations element-wise by learned “perceptual calibration” weight
tensors wl , compute the L2 norm, average spatially, and sum over all layers. This distance
is expressed as follows.

d(xi, xj ) =
∑

l

1

HlWl

∑

h,w

‖ wl � (ŷl
ihw − ŷl

jhw ‖2, (1)

where � denotes scale operator; H and W is the height and width of images in the given
image collection, respectively; h and w is the channel dimension of features at a certain
layer l; wl denotes the calibration weights at layer l which are learned by a “small network”.

23693Multimedia Tools and Applications (2022) 81:23687–23707



Small network, denoted by G, is designed to predict perceptual judgement from distance
pairs. Authors in [33] showed that perceptual similarity is an emergent property shared
across deep visual representations. In essence, using wl = 1 for all layers in network F
is equivalent to compute cosine distance. To obtain perceptual similarity, the weights wl

are learned by training network G from distance pairs. Given a reference image x and two
distorted images x0, x1 of x. A distance pair (d0, d1) is obtained by using (1), where d0 =
(x, x0), d1 = (x, x1). The judgement h ∈ (0, 1) is determined based on the proportion of
humans that perceived the image x to be more similar to x1 than x0 and the weights wl are
obtained by minimizing a cross entropy loss function which is formulated as:

L(x, x0, x1, h) = −h logG(d(x, x0), d(x, x1))

−(1 − h) log(1 − G(d(x, x0), d(x, x1))) (2)

The architecture of network G uses 32-channel FC-ReLU layers, followed by a 1-channel
FC layer and a sigmoid [33], as we depict in Fig. 2. For each pair of images xi and xj in the
input collection, we use the LPIPS metric in (1) to compute a “perceptual distance”.

In Section 5.2 we show a comparative analysis of animation results obtained with the
LPIPS metric and other image similarity metrics, including L2 in image space, L2 in a
denoising autoencoder’s bottleneck activation feature space, two traditional manifold learn-
ing methods’ embeddings, and the cosine distance of the same deep features used with
LPIPS.

4.3 Outliner detection and removal

Outliner detection and removal is an optional part of our proposed system which serves two
goals. One goal is to give a user more control over the length of the re-sequenced animation
and the other is to remove frames which would result in a non-smooth re-sequenced ani-
mation. Outliner removal is particularly important in the images are from an unstructured
collection of images, rather than from an existing video.

Images which have a large perceptual distance from all other images in the input col-
lection may negatively affect the smoothness of the resequenced animation result. Thus to
maintain the smoothness of the generated sequence, we remove outliner images which have
a large perceptual distance from their nearest neighbors. A naive approach would be to sim-
ply threshold the perceptual distance of nearest neighbors in the complete graph. However,
a constant threshold value cannot adapt to disparate input data. Therefore, we fit the percep-
tual distance of nearest neighbors to a probability distribution to detect and remove outliner
images.

Let Xi be a random variable equal to the average perceptual distance of image xi and its
nearest neighbors xi(j) for j ∈ 1, . . . , K .

Xi = 1

K

K∑

j−1

d(xi, xi(j)), (3)

In our implement, we choose the number of nearest neighbors to be K = 5.
To find the most likely distribution, we estimate the parameters of the generalized gamma

probability distribution function [27] given the samples Xi for i ∈ 1, . . . , N where N is the

23694 Multimedia Tools and Applications (2022) 81:23687–23707



total number of images in the input collection. The generalized gamma probability density
is defined as,

f (x; α, β, γ, μ) ∝=
{

(x − μ)αγ−1exp
(
−

(
x−μ

β

)γ )
, if x > μ

0, if x < μ,
(4)

The parameters α, β, γ , and μ are obtained with maximum likelihood estimation, i.e., by
maximizing the log-likelihood function of f given the random samplesXi . Once the param-
eters are found, we calculate the 0.9 quantile value T as a threshold and remove the i − th

column and i − th row from the original distance matrix for any Xi > T and update the
complete graph. In our implementation we choose the number of nearest neighbors to be
K = 5.

We choose the generalized gamma function as a distribution because of its flexibility. We
tested the Normal and Beta distributions but found that the generalized gamma distribution
produced better fits to the sample histograms than other distribution models.

4.4 Animation resequencing

Once perceptual distances between images in the image collection are computed, we con-
struct a complete graph G(V ,E) where a node vi ∈ V corresponds to image xi and the
weight of an edge eij ∈ E is d(xi, xj ) computed by (1). Given the index of starting frame
(s) and terminal frame (t) from the user, the new video sequencing is generated by finding
the minimum path from s to t on G. This algorithm returns a set of indices of images which
are used to reconstruct a new sequence. The pseudo code of this procedure is presented in
Algorithm 2.

Initially, we view the complete graph G as a crude approximation of a perceptual man-
ifold. Traversing the complete graph would allow for large “perceptual jumps” since each
pair of images are adjacent and a large perceptual distance of adjacent frames would result
in an unsmooth animation sequence. To improve our estimation of the perception mani-
fold, we find subgraphs which prune large edges from the complete graph and generate
animations by traversing a modified graph structure.

23695Multimedia Tools and Applications (2022) 81:23687–23707



To find the minimum path, our current re-sequencing system considers three differ-
ent types of algorithms, the shortest Hamiltonian path [4], the shortest Hamiltonian cycle
[4], and the minimum spanning tree [4]. In the following subsections, we formalize these
problems and give additional details and justification for these methods.

4.4.1 Shortest hamiltonian path sequence

To generate an optimal animation sequence through all the input images, we compute the
shortest path from starting and terminal frames which are assigned by the user. To achieve
this, we adopt the shortest Hamiltonian path [4].

For an input collection of images with m frames, the shortest Hamiltonian path in the
complete graph is the permutation of image ψ in the set of images Ψ which minimizes the
total perceptual distance between adjacent frames:

minψ∈Ψ

m−1∑

i=1

d(xψ(i), xψ(i+1)), (5)

Optionally, a user can add constraints to the set of permutations so that the first frame in the
Hamiltonian path has index ψ(1) = s and the terminal frame has index ψ(m) = t �= s. For
input animations which do not contain cyclic motion, this method can be used to reconstruct
the original animation sequence given s = 1 and t = m.

4.4.2 Shortest hamiltonian cycle sequence

To compute a cyclic animation sequence, we compute the shortest Hamiltonian cycle [4] of
the complete graph. Finding the shortest Hamiltonian cycle is equivalent to the well-known
traveling salesman problem, and corresponds to a cyclic permutation of images ψ which
minimizes the total perceptual distance between adjacent frames in set Ψ :

minψ∈Ψ d(xψ(1), xψ(m)) +
m−1∑

i=1

d(xψ(i), xψ(i+1)), (6)

The Hamiltonian cycle can generate looping sequences with continuously smooth motion
which can be chained together to create a looping animations of arbitrary length. We show
the result from uniformly sampling the shortest Hamiltonian Cycle Sequence in Fig. 3.

Fig. 3 Results from uniformly sampling the shortest Hamiltonian cycle sequence. In this example, the
sequence is generated from six images. The blue arrows navigate the starting frame (top-left frame)to the
ending frame (bottom-left frame) in a cycle

23696 Multimedia Tools and Applications (2022) 81:23687–23707



4.4.3 Key-frame path-finding

In key-frame path-finding, we use paths in the minimum spanning tree (MST) to return
temporally-coherent in-between frames given a set of key-frames by the user. Animators
typically choose key-frames as the beginning and end points of a temporally coherent tran-
sition. Thus, for in-between sequencing, we would like a high level of confidence that
in-between images remain close to the perceptual manifold and we hope to return a sequence
of many temporally coherent images to the user.

Since all of the perceptual distances are positive, the MST is the minimum-distance
subgraph which connects all of the images. Therefore our proposed method produces in-
between frames by traversing the path from one key-frame node to another along an MST.
The paths connecting key-frame nodes in an MST are well suited for finding in-between
images since the distance between nodes is relatively small which gives us a higher level
of confidence that the in-between images are temporally coherent. The MST also has
the advantage of having the minimal set of edges for a path-connected graph containing
each image in the input collection, thus reducing both the time and space complexity of
path-finding.

With this method, users may create animations from any number of key-frames by com-
puting paths between consecutive key-frames and combining the results. The user can also
view a 2D linear embedding of the MST to see an overview of the entire dataset and help
drive their decisions in key-frame selection. Figure 1 shows how a user can use the MST’s
2D linear embedding to choose key-frames and view the sequence of in-between images.

5 Experimental results

5.1 Implementation details

All our experiments are conducted on a PC with Intel Core i7 2.5GHz, 16GB RAM. The
perceptual judgments used to train in network G are obtained from publicly available Two
Alternative Forced Choice (2AFC) dataset collected by [33]. The AFC evaluators were given
3 image patches (1 reference + 2 distorted) and asked to select which of the distorted was
“closer” to the reference. Additional details about training and a thorough evaluation of the
effectiveness of the LPIPS metric can be found in [33].

In general, verifying if a sequence is a shortest Hamiltonian path or shortest Hamiltonian
cycle is an NP-complete problem [7]. For a given input collection with m-frames, verifica-
tion requires an exhaustive search of all m! permutations of the set {1, . . . , m}. For larger
image collections, finding an exact solution quickly becomes infeasible. However, for a
complete graph, the existence of a Hamiltonian path and Hamiltonian cycle is guaranteed,
and many polynomial approximation algorithms with bounded error have been proposed
[16]. In our implementation we use commercial software Mathematica [11] to solve the
shortest Hamiltonian path and Hamiltonian cycle problems. The MST, on the other hand,
can be computed very efficiently using a greedy method such as Kruskal’s algorithm [15].

5.2 Animation resequencing results

In this section, we show some representative results generated with our framework. To gen-
erate new animation sequences we collected test data by sampling frames from animation
videos, extracting deep features from the first five activation layers of VGG, applying the

23697Multimedia Tools and Applications (2022) 81:23687–23707



LPIPS metric to each pair of images in the input collection, and resequencing the animations
with the proposed outliner and graph traversal methods.

Figure 4 shows uniformly sampled frames of sequences generated by computing the
Hamiltonian path. We show the full sequences in our supplementary video as well as a
comparison with animation results using features extracted from AlexNet and other feature
extraction methods described in Section 5.3. The Hamiltonian path often reconstructs the
original animation if the user gives the initial and terminal frames as constraints. However,
by using the outliner removal and other frame constraints it is possible to create new motion
sequences which do not resemble the original input.

Our results show that Hamiltonian cycles can generate novel looping motion. A Hamil-
tonian cycle can create a pleasing looping effect, even when the input images come from an
animation that is not originally a loop. Figure 3 shows a uniform sampling of the Hamilto-
nian cycle results. See our supplementary material and video for additional results. Although
we obtained many pleasing looking results, there are input data where the Hamiltonian cycle
cannot immediately produce a smooth looping sequence. The proposed outliner removal
method can improve outcomes in some of these cases. Another option is manually remov-
ing outliner images. One advantage of our system is that image layouts of the Hamiltonian
cycle make it much easier to visually detect outliners and smooth subsequences.

Figure 5 shows key-frame results generated with the proposed method. To create these
results, we examined the MSTs to guide key-frame selection and return six in-between
images. In general, the user cannot directly control the number of in-between images
returned for arbitrary key-frame selection. However, using the linear embeddings of the
MST for visualization provides a useful way to select key-frames that produce the desired
number of in-betweens. Figure 1 shows a portion of an MST’s 2D linear embedding and our
supplementary material shows the full versions for all results shown in the paper.

The in-between frames generated by the proposed method are typically temporally-
coherent for key-frames which have relatively short path distance in the MST, but as the
path distance between key-frame nodes increase, so does the probability of unreasonable
in-betweens. In practice, we do not consider this a significant draw-back since choosing
additional intermediate key-frames can avoid this issue.

In addition to the results presented here, please see our supplementary material and video
for additional results and comparisons which are available on our project website: http://
graphics.csie.ncku.edu.tw/ManifoldAnimationSequence.

Fig. 4 Results from uniformly sampling the shortest Hamiltonian path sequence

23698 Multimedia Tools and Applications (2022) 81:23687–23707

http://graphics.csie.ncku.edu.tw/ManifoldAnimationSequence
http://graphics.csie.ncku.edu.tw/ManifoldAnimationSequence


Fig. 5 Results of our proposed key-frame method. The first and last frames are selected by a user and the in-
between frames are generated by traversing the minimum spanning tree. Please explore the supplementary
video in our project website for better visualization

5.3 Quantitative results

In order to quantitatively evaluate the effectiveness of the proposed method, we compare
resequencing results using LPIPS metric against other image similarity metrics previously
applied to video and cartoon animation resequencing. We compare the LPIPS metrics
against the following metrics:

• L2 distance in image space;
• L2 on the deep features of the bottleneck layer of a custom denoising autoencoder;
• L2 distance on the embeddings learned by traditional manifold learning LLE and

Isomap;
• cosine distance of deep features of VGG and AlexNet.

The first three metrics have been applied in previous research in video and cartoon ani-
mation resequencing [5, 24, 34]. To the best of our knowledge the activations of VGG and
AlexNet have not been previously applied to animation resequencing. However, we also
compare these features to measure the effect of the learned perceptual weights used by the
LPIPS metric. Each compared image metric is briefly described in Section 5.3.1. In Section
5.3.2, we present how we setup animation reconstruction for this quantitative evaluation.

5.3.1 Compared imagemetrics

aL2 Distance in Image Space. To compute L2 distance in image space, we represent each
RGB image as a flat vector x̂ ∈ R

w×h×c, where the our test images have c = 3 color
channels and a width w = 320 and height h = 180 pixels:

d(xi, xj ) =
√ ∑

c,w,h

(x̂ic,w,h
− x̂jc,w,h

)2, (7)

23699Multimedia Tools and Applications (2022) 81:23687–23707



L2 Distance in DAE Bottleneck Activation Space.We compare our results with a custom
denoising autoencoder (DAE) [29]. An autoencoder is a kind of neural network divided
into two parts, an encoder and a decoder. We consider the output of the bottleneck layer as
the features that the encoder retrieves and encodes from the input. The encoding network
of our DAE reduces the dimension of each image x to a lower dimensional latent vector
ŷ ∈ R

w×h×c, where the latent space has c = 500 channel dimensions and a width w = 16
and height h = 9 spatial dimensions. To measure image similarity we use L2 distance on
the activations of the bottleneck layer as below:

d(xi, xj ) =
√ ∑

c,w,h

(ŷic,w,h
− ŷjc,w,h

)2 (8)

The architecture and training procedure of the denoising autoencoder is described in the
appendix.

L2 Distance in LLE and Isomap Embeddings. The traditional manifold learning tech-
niques LLE and Isomap map a set of images X = {xi}mi=1 to a set of low dimensional
vectors Y = {yi}mi=1 where y ∈ R

d and d ∈ {1, . . . , m − 1} is the dimension of the embed-
ding which must be specified by the user. In addition to the dimension of the embedding,
the neighbors of each image must be specified.

In our comparison with traditional manifold learning, we test both LLE and Isomap
with all parameters for the number of nearest neighbors, k ∈ {2, . . . , 10} and embedding
dimensions, d ∈ {2, . . . , 20}, with L2 distance on the learned embedding vectors Y k,d =
{yk,d

i }mi=1.

d(xi, xj ; k, d) =
√ ∑

c,w,h

(y
k,d
i − y

k,d
j )2, (9)

Cosine Distance in VGG and AlexNet Activation Space. Lastly we compare the cosine
distance in the channel dimension of the same deep features used with the LPIPS metric
described in Section 4.1.

d(xi, xj ) =
∑

l

(1 − 1

HlWl

∑

h,w

ŷl
ihw .ŷ

l
jhw), (10)

5.3.2 Setup animation reconstruction experiment

We collected 39 animations, between 24 and 230 frames in length and with various images
styles and content. Figure 6 shows example frames of the animation video used in this
experiment. For each animation, the image order is randomly shuffled, and we attempt to
reconstruct the original sequence by computing a new sequence which starts and ends with
the same frames as the original animations’ initial and terminal frames. We then minimize
the total image dissimilarities between adjacent frames.

For each image metric, we repeat the following procedure for each animation in our test
set:

1. compute the complete weighted graph of images with the appropriate distance function
as edge weights;

2. compute a Hamiltonian path from the node corresponding to the first frame to the node
corresponding to the last frame;

3. calculate the normalized Kendall tau distance [13] of the original sequence and the
sequence generated by the Hamiltonian path.

23700 Multimedia Tools and Applications (2022) 81:23687–23707



Fig. 6 Examples frames from the animation reconstruction test set

For an animation with m frames, let A = 〈Xi〉mi=1 denote the original sequence of frames
Xi and let H(A) = 〈Xψ(i)〉mi=1 denote the shortest Hamiltonian path from frame-1 to frame-
m. Then the normalized Kendall tau distance between the original sequence and H(A) is
defined as:

κτ (H(A))) = 2

m(m − 1)

m∑

i=1

m∑

j=i+1

κ̄τ (ψ(i), ψ(j)), (11)

and

κ̄τ (i, j) =
{
0, if i < j

1, if i > j,
(12)

The Kendall tau distance measures the number of discordant pairs in the Hamiltonian
path sequence. It is normalized so that the distance κ̄τ (H(A)) ∈ [0, 1] for any number of
frames in the animation clip. A Hamiltonian path sequence with the same order as the test
animation has zero distance and a sequence with the reverse order has a distance of one,
thus the Normalized Kendall tau distance also gives a measure of rank correlation.

To consider an input animation as ground truth for a Hamiltonian path, it must not contain
cyclic motion. Thus we visually inspect each animation and remove examples with cyclic
motion. Additionally, we removed trivial cases where all test methods perfectly reconstruct
the animation.

We use 4 aforementioned compared image metrics to test on 39 reconstruct animations.
The comparison of everage Kendal tau distance is shown in Fig. 7. In the case of traditional
manifold learning algorithms LLE and Isomap, we test all parameters k ∈ {2, . . . , 10} and
d ∈ {2, . . . , 20} and select the lowest reconstruction error for each test animation. Besides,
we compare the normalized Kendall tau distance for the reconstruction of 39 animations

23701Multimedia Tools and Applications (2022) 81:23687–23707



Fig. 7 Comparison of the average Kendall tau distance (equation 12) for 39 reconstructed animations. We
test 8 different distance measures, pairwise L2 distance of the raw image pixels, the bottleneck layer of a
denoising autoencoder, and the low dimensional embeddings learned by Isomap and LLE; cosine distance
and LPIPS of the activations of selected layers of VGG and AlexNet

with different image similarity metrics in Fig. 8 and a box and whisker chart for all test ani-
mations and test methods in Fig. 9. The results show that, on average, using features from
VGG or AlexNet with the LPIPS metric produce Hamiltonian Path sequences which are
closer to the original sequence than all other test metrics. While all similarity metrics have
relatively small reconstruction errors, the bottleneck activations of the denoising autoen-
coder has the worst results. This may be due to the fact that the DAE is trained solely on
japanese manga style images. More diverse training data could possibly improve the results
of the DAE’s bottleneck features.

The traditional manifold learning technique LLE outperforms Isomap and slightly out-
performs the cosine distance of the extracted deep features of VGG and Alexnet. However
the experiment was slightly biased towards traditional manifold learning since each ani-
mation was tested with 171 different parameter settings and only the single best result
was counted towards the average reconstruction error. Despite this bias, LPIPS with VGG
features and AlexNet features performed better than LLE. This comparison is shown in
Fig. 10. We can see that LLE solely has lower error rate in few cases. In most of the

Fig. 8 A comparison of the normalized Kendall tau distance for the reconstruction of 39 animations with
different image similarity metrics (independently sorted). Obviously, LPIPS(VggNet) and LPIPS(AlexNet)
are the lowest in this comparison

23702 Multimedia Tools and Applications (2022) 81:23687–23707



Fig. 9 A box and whisker chart for all test animations and test methods. The whisker endpoints show the
maximum and minimum distance values. the solid box shows the 25 percent and 75 percent quantiles, and
the white notch shows the median value. In this chart, L2(LLE), LPIPS(AlexNet) and LPIPS(VggNet) are
comparable in the minimum values

tested animations, LPIPS with VGG features and AlexNet features have lower error rate
in reconstruction sequences. In addition, finding good parameter settings for the k nearest
neighbors and embedding dimension d can be difficult with traditional manifold learning
algorithms and require different settings for different input images. Our experimental results
show that animations reconstructed with features extracted from VGG or AlexNet, and the
LPIPS metric have lower average reconstruction error than the animations reconstructed
with traditional manifold learning embeddings without the need for any parameter tuning.
We give additional results and details of the reconstruction experiment in our supplementary
material.

5.4 Additional applications

5.4.1 Image layouts

The proposed framework can also be used to create image layouts used for quickly browsing
large collections of unordered images. Placing perceptually similar images next to each
other can improve human image retrieval tasks by reducing the perceptual load and thus
accelerating visual processing [25].

We tested our framework on input data for the data driven morphing technique proposed
by [1] comprised of four image sets where each image set contains between 148 and 722

Fig. 10 Comparison of reconstruction error rate between LLE and LPIPS(VGG, AlexNet) on 39 single test
cases. Obviously, LPIPS(VGG) and LPIPS (AlexNet) have lower error rate in most of the test animations

23703Multimedia Tools and Applications (2022) 81:23687–23707



Fig. 11 A radial image layout with sequences automatically generated by our system

images of different instances of the same object. Our framework was capable of produc-
ing many smooth and visually appealing image layouts from this data. Because of a large
number of images in the datasets, our framework can be useful for visualizing smooth sub-
sequences. For example, by identifying continuous subsequences of a given length with
a minimum perceptual distance between adjacent frames or sampling longer sequences
at even intervals. Figure 11 shows a radial image layout for images sequences generated
with our proposed method, an example of how our system could be used to visualize large
datasets of images of similar objects. Figure 12 shows an example of a smooth linear image
layout generated by the proposed Hamiltonian path sequencing method applied to a collec-
tion of textured boot images. In the supplementary materials, we also present more results
on this kind of application.

Fig. 12 Linear image layout example generated by the proposed method. Readers are suggested to see our
supplementary video for a better visualization

23704 Multimedia Tools and Applications (2022) 81:23687–23707



Fig. 13 Natural image video examples

5.4.2 Video synthesis

While this work focuses on animation video resequencing, our framework also applies to
natural image video resequencing. If the input images depict stochastic motion, such as
grass swaying in the win or ripples of water in a pool as the examples shown in Fig. 13,
smooth video resequences and cycle animations can be generated using the LPIPS distance
and the graph traversal algorithm described in our framework.

5.5 Limitations

Our framework’s main limitation is its dependence on the input data. If the collection
of input images is taken by densely sampling a video sequence with a strong distinction
between backward and forward motion, such as the school of fish and falling sequence
shown in Fig. 14, then the MST may be path-like, and the proposed sequencing meth-
ods will likely select frames which are very similar to the dynamics of the original video
sequence. In general, it may not be possible to generate new dynamics from input collec-
tions that do not contain a sufficient variety in motion and appearance. One possible way
to overcome this limitation would be to develop an image-synthesis technique to generate
new images that interpolate or extrapolate new motion by considering motion directions of
objects.

Fig. 14 The school of fish example (a) and the falling sequence (b) are the examples where the proposed
framework cannot produce smooth sequences other than the original video sequence

23705Multimedia Tools and Applications (2022) 81:23687–23707



6 Conclusion and future work

We proposed a novel deep-learning framework for a new application for animation video
resequencing which can generate smooth sequences and subsequences for many image
styles. Our framework can serve as an efficient tool to automatically create new animation
sequences from a collection of images. We also believe our framework could assist users in
creating a comprehensive animation dataset by extracting many smooth subsequences from
existing animation data. To our knowledge, a well-labeled dataset for general animation data
does not yet exist.

Our results suggest that the activations of convolutional neural networks are useful fea-
tures for smooth sequencing of photorealistic, non-photorealistic, ordered, and unordered
image collections. Our quantitative analysis shows that deep-features and the LPIPS metric
can reconstruct animation sequences with greater accuracy than cosine distance of the same
features, L2 distance of the activations of a denoising autoencoder, L2 distance in image
space, and L2 distance in the embedding space obtained by traditional manifold learning.
Our qualitative results also show that the LPIPS metric produces a visible improvement over
these other methods.

Despite the various styles, animators utilize a standard set of principles, including natural
movement, to create more realistic looking animations. Thus, in the future, we would like
to develop a self-supervised learning technique to extract motion features from existing
animation video and combine metric learning and sequencing in a single deep learning
optimization framework to solve problems in Fig. 14.

Supplementary Information The online version contains supplementary material available at
doi:10.1007/s11042-022-12251-1.

Acknowledgements The authors would like to thank the reviewers for the many constructive comments
that help improve the paper. This work was supported in part by the Ministry of Science and Technology
(contracts 107-2221-E-006-196-MY3 and 108-2221-E-006-038-MY3), Taiwan.

References

1. Averbuch-Elor H, Cohen-Or D, Kopf J (2016) Smooth image sequences for data-driven morphing. In:
computer graphics forum, volume 35, pages 203–213. Wiley Online Library

2. Belkin M, Niyogi P (2003) Laplacian eigenmaps for dimensionality reduction and data representation.
Neural Comput 15(6):1373–1396

3. Chen Q, Koltun V (2017) Photographic image synthesis with cascaded refinement networks. In:
proceedings of the IEEE international conference on computer vision, pp 1511–1520

4. Cormen TH, Leiserson CE, Rivest RL, Stein C (2009) Introduction to algorithms. MIT press, Cambridge
5. de Juan C, Bodenheimer B (2004) Cartoon textures. In: proceedings of the 2004 ACM SIG-

GRAPH/Eurographics symposium on Computer animation, pp 267–276
6. Fried O, Avidan S, Cohen-Or D (2017) Patch2vec: Globally consistent image patch representation. In:

Computer Graphics Forum, vol 36. Wiley Online Library, pp 183–194
7. Garey MR, Johnson DS (1979) Computers and intractability, vol 174. Freeman, San Francisco
8. Holden D, Saito J, Komura T, Joyce T (2015) Learning motion manifolds with convolutional autoen-

coders. In: SIGGRAPH Asia 2015 Technical Briefs, pp 1–4
9. Hore A, Ziou D (2010) Image quality metrics: Psnr vs. ssim. In: 2010 20th international conference on

pattern recognition. IEEE, pp 2366–2369
10. Huttenlocher DP, Klanderman GA, Rucklidge WJ (1993) Comparing images using the hausdorff

distance. IEEE Trans Pattern Anal Mach Intell 15(9):850–863
11. Inc WR (2018) Mathematica Version 11, vol 3. IL, Champaign

23706 Multimedia Tools and Applications (2022) 81:23687–23707



12. Kaelbling LP, Littman ML, Moore AW (1996) Reinforcement learning: a survey. J Artif Intell Res
4:237–285

13. Kendall MG (1938) A new measure of rank correlation. Biometrika 30(1/2):81–93
14. Krizhevsky A, Sutskever I, Hinton GE (2017) Imagenet classification with deep convolutional neural

networks. Commun ACM 60(6):84–90
15. Kruskal JB (1956) On the shortest spanning subtree of a graph and the traveling salesman problem. Proc

Am Math Soc 7(1):48–50
16. Laporte G (1992) The traveling salesman problem: an overview of exact and approximate algorithms.

Eur J Oper Res 59(2):231–247
17. Ling H, Jacobs DW (2007) Shape classification using the inner-distance. IEEE Trans Pattern Anal Mach

Intell 29(2):286–299
18. Liu G, Si J, Hu Y, S. Li. (2018) Photographic image synthesis with improved u-net. In: 2018 Tenth

International Conference on Advanced Computational Intelligence (ICACI). IEEE, pp 402–407
19. Osadchy M, Cun YL, Miller ML (2007) Synergistic face detection and pose estimation with energy-

based models. J Mach Learn Res 8(May):1197–1215
20. Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science

290(5500):2323–2326
21. Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein

M et al (2015) Imagenet large scale visual recognition challenge. Int J Comput Vis 115(3):211–252
22. Schödl A, Essa IA (2001) Machine learning for video-based rendering. In: Advances in neural

information processing systems, pp 1002–1008
23. Schödl A, Essa IA (2002) Controlled animation of video sprites. In: proceedings of the 2002 ACM

SIGGRAPH/Eurographics symposium on Computer animation, pp 121–127
24. Schödl A, Szeliski R, Salesin DH, Essa I (2000) Video textures. In: proceedings of the 27th annual

conference on Computer graphics and interactive techniques, pp 489–498
25. Schoeffmann K, Ahlstrom D. (2011) Similarity-based visualization for image browsing revisited. In:

2011 IEEE International Symposium on Multimedia. IEEE, pp 422–42
26. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition.

arXiv:1409.1556
27. Stacy EW et al (1962) A generalization of the gamma distribution. Ann Math Stat 33(3):1187–1192
28. Tenenbaum JB, De Silva V, Langford JC (2000) A global geometric framework for nonlinear dimen-

sionality reduction. Science 290(5500):2319–2323
29. Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol P-A, Bottou L (2010) Stacked denoising autoen-

coders: Learning useful representations in a deep network with a local denoising criterion. J Mach Learn
Res 11(12)

30. Yu J, Cheng J, Tao D (2012) Interactive cartoon reusing by transfer learning. Signal Process 92(9):2147–
2158

31. Yu J, Liu D, Tao D, Seah HS (2012) On combining multiple features for cartoon character retrieval and
clip synthesis. IEEE Trans Syst Man Cybern B Cybern 42(5):1413–1427

32. Yu J, Wang M, Tao D (2012) Semisupervised multiview distance metric learning for cartoon synthesis.
IEEE Trans Image Process 21(11):4636–4648

33. Zhang R, Isola P, Efros AA, Shechtman E, Wang O (2018) The unreasonable effectiveness of deep
features as a perceptual metric. In: Proceedings of the IEEE conference on computer vision and pattern
recognition, pp 586–595

34. Zhang S-W, Morace CC, Ngoc Hanh Le T, Yeh C-K, Yao S-Y, Lin S-S, Lee T-Y (2019) Animation
video resequencing with a convolutional autoencoder. In: SIGGRAPH Asia 2019 Posters, pp 1–2

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

23707Multimedia Tools and Applications (2022) 81:23687–23707

http://arxiv.org/abs/1409.1556

	Learning a perceptual manifold with deep features for animation video resequencing
	Abstract
	Introduction
	Related work
	Feature extraction and non-linear dimension reduction
	Sequential ordering of images

	System overview
	Method
	Deep feature extraction
	Perceptual distance
	Outliner detection and removal
	Animation resequencing
	Shortest hamiltonian path sequence
	Shortest hamiltonian cycle sequence
	Key-frame path-finding


	Experimental results
	Implementation details
	Animation resequencing results
	Quantitative results
	Compared image metrics
	Setup animation reconstruction experiment

	Additional applications
	Image layouts
	Video synthesis

	Limitations

	Conclusion and future work
	References




