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Abstract—Video holds significance in computer graphics applications. Because of the heterogeneous of digital devices, retargeting
videos becomes an essential function to enhance user viewing experience in such applications. In the research of video retargeting,
preserving the relevant visual content in videos, avoiding flicking, and processing time are the vital challenges. Extending image
retargeting techniques to the video domain is challenging due to the high running time. Prior work of video retargeting mainly utilizes time-
consuming preprocessing to analyze frames. Plus, being tolerant of different video content, avoiding important objects from shrinking,
and the ability to play with arbitrary ratios are the limitations that need to be resolved in these systems requiring investigation. In this
paper, we present an end-to-end RETVI method to retarget videos to arbitrary aspect ratios. We eliminate the computational bottleneck
in the conventional approaches by designing RETVI with two modules, content feature analyzer (CFA) and adaptive deforming estimator
(ADE). The extensive experiments and evaluations show that our system outperforms previous work in quality and running time.

Index Terms—video retargeting, RETVI, analyze video, deforming, grid movement, pixel movement
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1 INTRODUCTION

V IDEO is a widely used media form that holds significant
importance in computer graphics applications due to

its ability to convey motion, simulate reality, and engage
viewers. Because of the heterogeneous of digital devices,
adapting videos to different display size, resolution, or as-
pect ratios (referred to as “Video Retargeting”) has become an
essential function in these applications. For example, video
retargeting can be employed to (1) adapt video content
in real-time based on user actions or analytical queries
[4]; (2) ensure that the video content is visually pleasing,
legible, and seamlessly integrated with the augment reality
environment [5]; or (3) dynamically adjusts the content of
virtual reality (VR) videos to match the specific character-
istics of different VR headsets [6]. Additionally, resizing
videos has become increasingly popular with the advent of
smartphones equipped with video capabilities and the rise
of social media platforms. Whether you choose a standard
aspect ratio for content to be streamed on a laptop or a cell
phone, it is crucial to ensure that the video presents clearly
without unsightly cropping, providing the best experience
for your audience. By leveraging video retargeting in these
applications, it could ultimately enhance users overall view-
ing experience. To drive a video to a target size, conven-
tional video retargeting methods require a time-consuming
and expensive process to analyze input videos prior to resiz-
ing. In contrast, we have developed a deep learning-based
framework allows for retargeting videos to arbitrary aspect
ratios in an end-to-end manner. Our approach eliminates the
computational bottleneck present in conventional methods
while delivering higher quality results.

Researchers explore the problems of video retargeting
with various approaches, including conventional and state-
of-the-art (SOTA) techniques. The retargeting image could
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be the background research of video domain. Several at-
tempts have resolved the image retargeting’s problem. Each
method usually consists of two main steps: (1) determining
the importance of image pixels by extracting an importance
map and (2) performing an image retargeting operator to
obtain the retargeting image [7]. Deep learning-based tech-
niques can produce good visual results. However, it requires
equipment with high computation power and comprehen-
sive datasets. We can see a comparison on the running
time of the most recent SOTA image retargeting systems in
Fig. 1. Extending a deep learning-based image retargeting
technique to the video is tough to operate.

Fig. 1: Comparison on running time (second) of the existing
SOTA image retargeting methods and our RETVI.

Unlike retargeting images, working on the video domain
is more challenging. Along with preserving important con-
tent after resizing sessions, producing temporally coherent
retargeting videos is also vital to judging the performance of
such a video retargeting system. Researchers have explored
this research domain in various ways [50, 35, 55, 33, 27].
However, they share an identical workflow as those in
the image domain. They need to utilize some off-the-shelf
content analysis, i.e., saliency map and segmentation, to
pre-process video frames in advance. This approach leads to
two significant downfalls. First, the quality of resized videos
depends on the performance of these auxiliary functions.
This may not only downgrade the capability of the proposed
method but also prevent the method from playing with di-
verse video content. Second, analyzing video frames is more
expensive than single images. It may take minutes to process
on a single frame. Processing time is an important factor
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when retargeting is used in services like video on demand
or live streams, especially when the ability to retarget videos
with high resolutions in real-time is required [21]. Therefore,
using such a time-consuming system to retarget video in the
high demand of the digital age could be impractical.

To this end, the challenges in video resizing are not
only retaining important content in such temporal coherent
results but also the demand for a scheme that can adapt
to diverse video content, tolerate various aspect ratios, and
be fast in running time. Motivated by this observation,
we propose a novel end-to-end framework, abbreviated as
RETVI, to address the above challenges. We aim to retarget
videos to arbitrary aspect ratios without using hand-craft
pre-processing or image/video retargeting annotations. Our
designed framework attempts to capture the critical infor-
mation of video and preserve them after retargeting session
without distortion and shrinking artifacts. Our essential
contribution is reducing the running time cost to process
video retargeting in an end-to-end manner. To achieve these,
we design our framework consisting of a content feature
analyzer (CFA) and an adaptive deforming estimator (ADE).
The CFA is responsible for learning the content information
of the input frames. Analyzed features serve as guidance
for deforming the frame to a target size. In this manner,
we propose a neural network, which can be considered an
alternative to the time-consuming pre-processing in prior
work. With the knowledge learned from CFA and a given
resizing ratio, our ADE module tries to teach the network
how to deform the input frame with minimum distortion.
We test the performance of our proposed method through
various videos. The experimental results and evaluations
demonstrate that our system outperforms previous works
in quality and running time.

In summary, our main contributions are as follows:
• We investigate a novel end-to-end video retargeting

based on high-level representation of video frames.
• We design a network that can effectively demonstrate

the important content of the video, which performs
better the expensive computation of the preprocessing
in prior video resizing systems.

• Our method can adapt to various video contents and
arbitrary aspect ratios.

• End-to-end and fast running time enable our system to
be potentially embedded in other services or applica-
tions.

2 RELATED WORK

2.1 Image Retargeting
Image Retargeting has received much attention during the
last decade. Researchers approach this domain with differ-
ent techniques, from conventional to state-of-the-art. Most
of the classical image resizing algorithms [8, 36, 18, 31, 19,
12] share an identical workflow with two steps. In the first
step, an importance map is generated via visual attention
analysis methods, like saliency detection. The main goal
is to preserve the regions with high importance as well as
possible. In the second step, an operator retargets the image
[21]. Cropping, scaling, warping, browsing, seam carving,
or combining them are the typical operators selected and
used in these resizing algorithms. Most recently, Kim et al.

[22] investigated a novel approach, a grid encoding model
for image retargeting, which takes each horizontal/vertical
distance between two adjacent vertices as an optimization
variable. The results demonstrate that their method con-
sistently outperforms previous methods on qualitative and
quantitative perspectives [22].

With the revolution of deep learning technologies, sev-
eral works have applied these new techniques to resolve
the problems in image retargeting [57, 47, 48, 37, 10, 30].
CarvingNet [47] uses an encoder-decoder CNN to develop
an importance map based on a learning model. WSSDCNN
[10], a network learns the image content via an attention
map, guiding pixel-wise mapping during retargeting. Cycle-
IR [48] solves the problem of image retargeting through un-
supervised learning. Conceptually, they build the network
based on reverse mapping from the retargeted images to
the given input images. Formulating the multi-operator re-
targeting upon reinforcement learning technique is a novel
approach presented in SAMIR [57]. This approach can pro-
duce results with lower computational costs. Nevertheless,
the running time is relatively high, and the results still suffer
from cropping seriously.

2.2 Video Retargeting

Preserving the relevant visual content in videos while avoid-
ing flicking is the most crucial challenge of video retarget-
ing [21]. Using image retargeting techniques on individual
video frames does not provide satisfactory results as they
might change entirely different areas in adjacent frames
[24]. Video retargeting becomes an exciting research topic
recently when the explosive growth of social platforms and
digital devices demands the videos to be resized to display
them nicely.

The early attempts to retarget videos use a straight-
forward technique, cropping [35, 9, 53]. Later, researchers
investigate more algorithms to resolve the problems in this
research domain. Extending the typical techniques in image
retargeting to video is commonly used by researchers, par-
ticularly seam carving and warping operators. Extending
seam carving to video retargeting might lead to high pro-
cessing time. Therefore, researchers in [14, 17, 50] focus on
speeding up the processing time and saving memory space
when extending this technique to videos. Applying warping
to retargeting videos may cause undesirable artifacts. It
is because of a temporal motion of an image region in
one direction followed by motion in the opposite direction.
Therefore, warping-based research applied to videos focuses
on image stability and run-time performance [21]. Gallea
et al. [15] use a 2D grid for image retargeting and add a
third dimension to handle changes over time. The authors
in [28, 51] extend the axis-aligned image retargeting to video
by computing the deformation for selected keyframes and
interpolating the other frames. A contrasting approach to
these extensions is introduced by Lin et al. [33]. The authors
use a uniform grid mesh for the warping in this work.
They focus on preserving the important objects in a video
while warping the non-important regions in a way similar
to linear scaling [21]. The most recent work in this research
domain is introduced by Lee et al. [27], which uses a deep
neural network for video retargeting. Their concept uses



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 3

object detection to allocate the bounding boxes of the main
objects in a video. Then, the remaining background areas
are resized to preserve the content of the bounding boxes
without deformation. Along with retargeting traditional
images/videos, the research domain on stereo image/video
retargeting also receives attention. The studies proposed in
[32, 34, 45, 13] demonstrate that analyzing the importance
in input is an essential factor to gain good quality resized
stereo images/videos.

The sharp contrast between our framework and theirs
[50, 55, 33, 27] is that we develop an end-to-end system
for retargeting videos to arbitrary aspect ratios. Our pro-
posed method is faster than the conventional techniques,
effectively preserving important information in videos after
retargeting session without distortion or shrinking phe-
nomenon, and tolerant to videos with dense content and
multiple moving objects alike.

3 METHODOLOGY

3.1 System overview

We propose a novel framework RETVI for retargeting videos
to the arbitrary aspect ratio. Our approach is to retarget
videos without hand-craft pre-processing or image/video
retargeting annotations. We convert the video retargeting
problem to an unsupervised learning problem of conditional
transformation regression without explicitly computing a
transformation. As diagrammed in Fig. 2, a pair of video
frames (Vo, Ve) is required in the training process, in
which Vo is the input video frame and Ve is the extracted
foreground of Vo. In the inference phase, only the video
with frames {Vo} is required as input in our end-to-end
retargeting process. In the following, in the context that we
do not need to differentiate Vo and Ve, we use V to denote
such an input frame in our system. Specifically, we model
our RETVI with two modules, a content feature analyzer
(CFA) and an adaptive deforming estimator (ADE). The
specific procedure is outlined in Fig. 2(b).

As named, the CFA is responsible for analyzing the input
content. It accepts video frames as the input. As a result,
CFA converts the input frames V to high-level representa-
tion. Conceptually, ADE receives feature representation of
V and a random resizing ratio as inputs, and tries to teach
the network how to deform V with minimum distortion.
Afterwards, we train the network with the weighted sum of
four loss functions. Once trained, given a video and target
size, our network can efficiently and effectively produce the
retargeting result in an end-to-end manner. Instead of using
an expensive pre-processing for visual attention analysis
as in the aforementioned conventional retargeting systems
(e.g., saliency map, segmentation, optical flow), we analyze
the input frames by the CFA module. The features obtained
from CFA are more robust to noise and occlusions than
saliency maps or segmentations. This is because they rely
on higher-level features, such as shape, texture, and context,
which are less affected by noise and occlusions than low-
level features such as color or intensity. Besides, CFA can
be more computationally efficient and generalizable to new
images once trained.

3.2 Network architecture
3.2.1 Content Feature Analyzer
This module, dubbed as CFA, shoulders the task of learning
the contextual information of frames during encoding them
into latent space. This process can be considered as an alter-
native to the time-consuming pre-processing, i.e., saliency
and segmentation, in those described above conventional
resizing systems. To define the important regions in frames,
such a well-known object detection also could be used.
Nonetheless, detection focuses on detecting the bounding
boxes surrounding the detected objects. Meanwhile, we aim
at estimating at the pixel level to capture more semantic
information in the frame rather than using the bounding
boxes. Consequently, we structure CFA such that it can
produce pixel-wise output of input frame from encoded
features. We design CFA with the inspiration from the U-
Net model [41], which has been a successful network in
medical image segmentation. It is later varied to be used
in other applications, such as natural image analysis, nat-
ural language processing, and image classification. U-Net
is shaped in various structures depending on the goal of
a particular application. Similarly, we design a variation of
this standard model to meet the purpose mentioned earlier.
The tweaks of our design are as follows.

Given a video frame V in size H × W , we generate a
pyramid of spatial features from coarse to fine granular-
ities through a so-called E-Blocks, which is structured by
Conv3×3 → Normalization → Tanh. Formally, the feature
maps produced by an E-Block is formulated as:

Ei = T (B(C3(Ei−1, κi))), (1)

here C3(.) performs the 3 × 3 convolution, B(.) represents
the batch normalization, and T (.) indicates the Tanh acti-
vation function. Ei is a matrix in RHi×Wi×κ with κi is the
number of kernels used in the ith E-Block, i = 1 . . . 7. The
contrary path is a symmetric form of those obtained from
E-Blocks. It is worth noting that we deepen the number
of layers to seven since we aim to detect both the more
extensive features (i.e., the main objects in the foreground)
and the more fine-grained features (i.e., the small objects in
the background). In the pure UNet and its variants, skip
connections play a crucial role in facilitating information
flow between different levels of the network, enabling better
feature propagation and learning. They mostly use skip
connections at every upsample layer. In contrast, we employ
the skip connections half-way, i.e., at layer 4 to layer 7, as
features are with more fine granularity dwell deeper layers.
This strategy could aid in discriminating objects from the
background regions or multiple objects distributed entire
frame. It eventually boosts the capability of the decoder.
Specifically, we embed an ED-Gate (G) at each skip con-
nection to summarize the fine features and construct the
decoded features. The feature maps at each symmetric layer
are expressed as follows:

Di =

{
G(Ei,Di+1) , if 4 ≤ i ≤ 6

Ω(Di+1) , if 1 ≤ i < 4
, (2)

here Ω(.) represents for a so-called D-Block, which is formu-
lated as:

Ω(Fout) = R(B(CT (F in))), (3)
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Fig. 2: Left: the workflow of our RETVI in training and inference; right: visualization of the CFA and ADE modules.

where R is the ReLu activation function, and CT (.) is the
transposed convolution operator. In essence, the CT (.) oper-
ation forms the same connectivity as the normal convolution
but in the backward direction. Moreover, the weights in CT

are learnable, we accordingly do not need a pre-defined
interpolation method.

In the ED-Gate, given two feature maps Fe and Fd,
respectively from encoding and decoding layers, Fe is first
fed to a CBR block, which is structured as Conv3×3 → Nor-
malization → ReLu. It is then concatenated with Fd to result
in the output feature maps at a certain skip connection.
Theoretically, the output of an ED-Gate is expressed as:

Fg = CBR(Fe)⊠ Fd, (4)

with ⊠ is the concatenation operation.
We can obtain certain advantages with the above design.

First, increasing the depth of layers can capture more com-
plex features in the image, which can lead to improve the
accuracy of understanding the image content. This is espe-
cially important for analyzing the image having complex
textures. Second, the ED-Gate boosts that the information
can flow more directly between the encoder and decoder.
Third, this design can help improve the parameter efficiency
of our model by allowing it to capture more information
with fewer parameters. This can help prevent overfitting
and improve the generalization performance of the model.

3.2.2 Adaptive Deforming Estimator
With the decoded feature map D1 obtained from the CFA,
the question here is how to thread it to learn the appro-
priate deformation matrix. In other words, we need to
define a function f : Rh×w×k −→ RSh×Sw , where h,w, k
is the height, width, and kernel size of D1. The matrix
H ∈ RSh×Sw is shaped in the same size with the input
frame, i.e., Sh × Sw. Finding the mapping function f is a
game that several prior work has challenged with, such as,
geometric warping with industrial style transfer [52], video
stabilization [56]. Optionally, depending on the goal of a
certain application, the function f is designed in different
ways. In our current application, we aim to estimate a
deformation to drive the input frame from a source size S
to a target one T, SSh×Sw −→ TTh×Tw , with minimum
distortion and content awareness. For this goal, we design
the Adaptive Deforming Estimator (ADE). In this stage, we
consider the advantage of both pixel-based and grid-based
strategies when formulating the function f . Pixel-based is
simple and can be computationally efficient. However, it

can lead to loss the detail and resolution, particularly when
downsampling an image. Meanwhile, grid-based methods
can preserve more detail and resolution in the resized frame
than pixel-based methods. However, it can be more compu-
tationally expensive than pixel-based methods. To alleviate
the burden of the trade-offs between computational effi-
ciency and image quality, we devise an in-between strategy,
which can use the advantage of each method.

Now, we detail how we utilize feature maps D1 to
deform frames. The workflow of this phase is outlined
in Fig. 3. First, we transform D1 to 2D-grid form via an
activation function:

Q =
1− e−2a

1 + e−2a
, (5)

here, a ∈ D1, a tensor with 16 channels; hence, Q ∈
R2×16×16. Through equation (5), each element in the feature
map D1 is returned values in range (-1, 1), which indicates
the fine features of the input frame. To define the mapping
value in Q to pixel in V , we interpolate Q to a regular
Sh ×Sw grid pixel coordinate: E = ∇b(Q), here ∇b denotes
the upsampling operator with bilinear mode. The resultant
dense map E represents for the information of the corre-
sponding pixel in the input frame. As a result, each pixel
in E is also a grid cell, and we assume each of them to
be a seed. A seed s(cs, es) ∈ E has a coordinate cs(x, y)
and energy es(x, y). The energy of a seed demonstrates
how important the pixel is. A pixel belonging to important
regions should have a smaller energy compared to those
belonging to the reverse one. In other words, pixels are with
higher energy will be more deformed than others. We call E
an energy map, which is considered as the guidance for the
later deforming estimation.

Given a target size T(Th, Tw), to construct the resizing
form (denoted as R) of frame V , instead of deforming V
directly, we make a tweak to manipulate this process. First,
the energy of seeds in E is extracted and re-formulated to
define a matrix H, in which value at coordinate (i, j) is a
tuple with: Hij

x = esx ×ℜ
Hij

y = esy ×ℜ
(6)

here i = 0, . . . , Sh − 1; j = 0, . . . , Sw − 1; and

ℜ =


(
1− r

)2, if reducing

−
(
1− r

)2, if enlarging
(7)
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where r = Tw

/
Sw, i.e., the resizing ratio. To make our model

be tolerant with arbitrary target sizes, r is randomized in
the range of [0.25, . . . , 1.25] in our training. The matrix H
represents the seed’s flow intensity when the current space
is retargeted. Thereafter, we initialize an empty pseudo
frame p-V in the same size with V . Then, we partition V
and p-V into a regular grid of size (Sh ×Sw). Consequently,
we deform p-V using the matrix H, resulting in a deformed
grid d-V . The coordinate of a cell in d-V is defined as:
(csx + Hij

x , c
s
y + Hij

y ). By applying different deformation
weights to the x-axis and y-axis separately, we can achieve
non-linear changes in the shape of the resized frames. Once
deforming p-V to d-V , we use d-V as a mapping to sample
pixel values from V and generate resizing frame R. The
frame R is constructed by interpolating the pixel values
according to d-V . The matrix H is a learnable parameter,
and R is optimized at each iteration during training by four
loss functions. The energy es is contravariant with the pixel
property at a particular seed. That is, the more important
the pixel is, the smaller the energy is.

Fig. 3: The workflow of our resizing strategy.

Our above tweak serves the following benefits. First,
the deformation is applied on the coordinate system itself,
without considering the content of the frame. Hence, it
results in a smooth and continuous transformation. Second,
we have more control over the transformation of the coor-
dinate space. This allows us to apply various aspect ratios
on the deformation. Besides, by formulating ℜ during the
training, the model can learn to adapt to various resizing
ratios under the control of loss functions. As a result, we do
not need to re-train the network whenever it plays with a
new target size. Also, such a time-consuming pre-processing
mentioned above is eliminated and videos are retargeted in
an end-to-end process.

3.3 Loss function

Let the generator network be denoted by f parameterized
by weights µ, it transforms an input frame V ∈ RH×W×C

into an output deformation matrix H via the mapping
H = fµ(V). Network learning adjusts the parameters
µ through minimizing four loss functions Lcri, Lglo, Ltem,
and Lfid. Each loss function computes a scalar value L(.)
measuring the difference between the input frame and the
retargeting frame corresponding to four loss functions. The
network is trained to minimize a weighted combination of
the loss function:

µ∗ = argmin
µ

EV
[
λcLcri+λgLglo+λtLtem+λfLfid

]
. (8)

The parameters λc, λg , λt and λf are all set to 1 in our
training. In the following, we delve in detail the figuration
of each loss function. The ablated results on each component
in our optimization are presented in later Sec.4.5.

Critical region loss (Lcri). In reconstructing the frame to
a new ratio, the goal is to recover the impaired frame to
match the pristine undistorted counterpart visually. Thus,
we need to design the loss that would adhere to that goal.
We are inspired by the perceptual loss [20] to supervise
feature changes. Perceptual loss is expressed in various
forms depending on specific application, e.g., image style
transfer, image restoration, image colorization. Specifically,
in our current application, we formulate this loss to dis-
tinguish important objects in a frame and maintain their
proportional shape between the ground truth foreground
and the estimated foreground frame, written as:

Lcri =
∑
i

1

CiHiWi
∥ (Γ(Φi(Ve))− Γ(Φi(Re)) ∥22, (9)

where Γ is an off-the-shelf feature extractor. In our exper-
iment, we use VGG-19 as a feature extractor. However,
other pre-trained models, such as ResNet, could result in
equivalent effect. Φi(.) is the feature maps in the ith layer
of the corresponding input parameter Ve or Re. Here, Ve

is annotated foreground of the input frame Vo and Re is
resized form of Ve. With this loss function, the regions with
low energy in the input frame can be well preserved.

Global integrity loss (Lglo). In addition to the critical
regions, we also consider the overall presentation of the out-
put image. This objective function is particularly effective
when the content is dense and distributed entire frame. To
preserve the frame information as much as possible, making
resized frames more harmonious and natural, we rely on the
advantage of an image classification network (shortened by
ICFNet). In a certain ICFNet, for instance, VGG or ResNet,
the architecture consists of feature extraction blocks and
ends with a fully connected layer, which is then used for
producing predictions. Inspired by this, we formulate Lglo

to define how the content of the input frame is preserved
in the retargeted one. Let denote x be the one-dimensional
latent vector of an input frame V after the fully connected
layer of the ICFNet. The probabilities in vector x for all
possible Nc classes is expressed as:

P (x|Nc) =
exp(x)∑Nc

j=1 exp(xj)
(10)

The objective of Lglo can be simplified as:

Lglo =∥ P (xo)− P (xr) ∥22), (11)

here P is defined by Eq.(10); arguments xo, xr are respec-
tively the latent vectors of Vo, Ro after feeding them to a
ICFNet. In our experiment, the ICFNet we use is ResNet.
Using VGG models may also result in equivalent effect. With
Eq.(11), we can measure the different degree of the pair
(xo, xr), i.e., defining whether they are classified into the
same classification. In this way, the content information can
be compared without being limited by the size difference
between frames Vo and Ro.

Temporal consistency loss (Ltem). Temporal consistency
should be specifically considered in our video retargeting
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task. The temporal consistency loss is used for evaluating
the coherence between adjacent resized frames. To obtain
this coherency, several works in the video generation do-
main, such as video style transfer, video stabilization, video
segmentation, etc., usually calculate the pixel correspon-
dence between adjacent frames with optical flows. However,
the time cost of optical flow estimation is expensive. It could
affect the efficiency of the model. Besides, in our video
retargeting application, the sizes of the input and retar-
geted frames are different, so finding the mapping optical
flows in this context is impractical. Instead, we base on the
knowledge of the correlations between the features of the
adjacent frames to infer the temporal consistency degree in
the retargeted videos. For any triplet of the adjacent frames
with the respective supper script t − 1, t, and t + 1, the
temporal consistency loss is formulated as:

Ltem =
∑

∥ γ(Vo
t−1,Vo

t ,Vo
t+1)− γ(Ro

t−1,Ro
t ,Ro

t+1) ∥22
(12)

where γ(.) is to calculate the correlation of features between
adjacent frames. Assuming with a certain triplet of three
adjacent frames (Ft−1,Ft,Ft+1), γ(.) is expressed as:

γ(.) =

∑(
Γ(Φi(Ft−1))× Γ(Φi(Ft))

)
× Γ(Φi(Ft+1))

)
HiWiCi

(13)
with Γ(.) and Φ(.) are defined in the same way with Eq.(9);
i ∈ [1 . . . 4]. Using the correlation of features between
adjacent frames could be more appropriate to maintain
temporal coherence than optical flow in video retargeting
applications. Video retargeting involves changing the res-
olution of a video, which can cause distortion and loss
of detail. To avoid these issues, it’s important to maintain
temporal coherence between frames, so that the motion
and appearance of objects in the video remain consistent.
Compared to other alternatives, such as optical flow, our
formulation is simplicity, robustness, and useful for our task
when changing the size.

Fidelity loss (Lfid). Apart from minimizing geometry
distortions, the quality of the resized frames is also a vital
aspect we take into account in our current application. The
matrix estimated by our network plays as the weight for
deforming frames. However, the retargeted results might
be blurry due to the relative coordinates we used to re-
construct the pixels in the ADE module. To alleviate this
phenomenon, we propose the fidelity loss. Our idea in this
manner comes from the concept of Generative Adversarial
Networks (GANs). Unlike the discriminator in such a GAN-
based network which tries to classify examples as either
real (from the domain) or fake (generated), our formulation
aims to discriminate the fidelity of retargeted frame to its
corresponding input in terms of pixel color value. We note
here that without Lfid, our network alone is capable to
estimate the deformation matrix efficiently. Besides, our
model is not supervised by the annotated retargeting data,
the optimization plays as auto-alignment manner. To this
end, we propose this loss to boost the performance of our
model in terms of “clean quality.”

A pair of frames (Vo,Ro) is taken as input in our
formulation. They are first fed to a so-called Fid-Disc to
analyze them in feature space. Unlike other loss functions,
Lcri, Lglo, Ltem, which use an off-the-shelf feature extractor,

we design a lightweight module to configure Lfid. The Fid-
Disc contains 6 CBR blocks, as used in the ED-Gate, and 1
fully-connected hidden layer (64 channels). Accordingly, the
fidelity loss is expressed as:

Lfid =
1

2

(
ξ(D(Vo), 1) + ξ(D(Ro), 0)

)
, (14)

where

ξ(.) = − 1

n

∑(
(τ [i] ∗ log(η[i])) + (1− τ [i]) ∗ log(1− η[i])

)
.

(15)
Here, D is the Fid-Disc; η is the score output by D with
the parameters Vo or Ro; and τ is the score we want it to
discriminate, i.e., τ ∈ {0, 1}. The training goal of D is to
distinguish the input frame from its resized frame by the
ADE module. Our network tries to generate a high score
(i.e., close to 1) from D, so that the output of ADE module
can be closer to the quality of the input frame.

4 EXPERIMENTAL RESULTS

4.1 Implementation Details

We implement our RETVI in Pytorch [39]. All experiments
were performed on a PC equipped with Intel Core i7-770
CPU, 16GB RAM and a GeForce RTX 2080 Ti GPU. We train
RETVI using batch size 2 within 150 epochs. The training
takes approximately 10 hours. For the loss function, we use
Adam optimizer [23] with a learning rate of 1× 10−3.

In terms of training data, we train our RETVI on DAVIS
dataset [40], which consists of 90 videos in size 854 × 480
with single and multiple moving objects. In the dataset, each
video has a corresponding foreground annotation. We use it
as Ve and the original video as Vo. Preparing training data
by collecting videos using existing tools/methods to seg-
ment foreground for them is also an alternative. However,
this way is not recommended since the performance of the
foreground extractor may cause occlusion effect and make
the accuracy of importance region unstable.

To produce final resizing frame R after sampling d-V
to input frame V , we reconstruct the content in a window
(W) of

[
(Sw

2 − Tw

2 ) : (Sw

2 + Tw

2 )
]
. Since our RETVI is

trained to play with arbitrary ratios while controlling sev-
eral aspects of video quality (such as global content, critical
region content preservation, temporal coherence, etc.), the
content after sampling may not always fit with the window
W. More specifically, when resizing a frame of width Sw

to a target width Tw, we try to estimate matrix H such
that the total movement of pixels is as tight as possible to
Tw. However, due to the trace-off in our afore discussion,
the total movement would be lightly greater than Tw in
some cases. As a result, cropping may occur. See detail
visualization in the supplementary file.

4.2 Our Results and Discussion

To demonstrate the abilities of our method, we test it
on various video contents. Fig.4 exhibits the results of
three typical showcases in our experiments, each video
has different attributes. To be specific, the video “Dancing”
is with people, video “Talkshow” is with a single object
and text attributes, and the video “Packing gift” is with
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Fig. 4: Performance of our method on different video contents by retargeting to ratio from 0.9 to 0.3 of width.

Fig. 5: Our method challenges on images with different retargetability levels. The input images and results by F-MultiOp and
AAD are quoted from the source paper [49].

multiple objects distributed in entire frame. Among the
three videos, the video “Dancing” is a camera-move-video.
Readers are encouraged to explore our project website
(http://graphics.csie.ncku.edu.tw/RETVI) to see more re-
sults. We can summarize the aspects that enable our results
to advance previous works as follows.

We can alleviate the shrinking phenomenon of impor-
tant objects when reducing sizes effectively. This aspect is
gained by benefiting from the CFA module and the critical
region loss (Lcri). We observe that this phenomenon often
involves reducing videos to a considerably smaller size,
i.e., less than 0.6 of width. In the demonstration of Fig.4,
we put the results generated by linear scaling to facilitate
inferring the quality of our results. It can be seen the dancers
(video “Dancing”), the lady (video “Talkshow”), and the
gift-box shape (video “Packing gift”) are preserved quite
well without shrinking artifacts. It is obvious to observe the
video “Talkshow”, the shape of the lady is shrunk and the

text is distorted when the video is reduced to 0.3 of width
by linear scaling. However, they still appear in a visually
pleasing manner in our results.

Being tolerated of various video contents and arbitrary
aspect ratios without suffering from distortion could be
an advantage of our work. As can be seen in Fig. 4, the
important contents in three sample videos are not damaged
when the resizing ratios varies from 0.9 to 0.3. Particularly in
the video “Packing gift”, it is such a challenging video since
the important contents are dense and distributed in entire
frame. Thanks to the performance of our CFA module, our
network can fully understand such dense content. Besides,
with the aid from global integrity loss Lglo, all information
of this challenging video is preserved harmoniously and
integratively with the source.

Being extendable to image retargeting is a plus of our
proposed system. Several deep learning-based algorithms
have been investigated to resize image recently. Detail com-

http://graphics.csie.ncku.edu.tw/RETVI
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parisons with these methods are presented in the supple-
mentary file. Here, we exhibit the typical cases mentioned
as the challenge in this research domain to demonstrate the
capability of our RETVI. The research by Tang et al. [49]
concludes that not all images can be equally resized. This
property is defined via a retargetability score, ranged from
0 to 1. They show that the images with low retargetability
scores are difficult to preserve visually and semantically
important content after resizing. For this challenge, we
test our RETVI on the images with different retargetability
levels. Fig.5 presents two samples, one is with medium level
(score: 0.57), and the other is with low retargetability (score:
0.1). As shown in the figure, in image (a), the compared
method F-MultiOp generates result with serious cropping
(i.e., the hand and the mug). In image (b), the shape of
the main object (i.e., the clock) is distorted by deformation
in AAD [38]. In contrast, these phenomena do not occur
in our results. Our RETVI produces plausible results in
both cases. The results of this experiment demonstrate that
our method is potentially used for retargeting images with
various image content.

TABLE 1: Comparison on execution time per frame

Method Pre-processing Retargeting

Ref. [33] Saliency map-4(s) Segmentation-72(s) 1.32(s)

Ours No No 0.016(s)

Finally, running time could be an essential advantage of
our method over prior work. Table 1 reports the running
time (excluding video reading/writing) that our RETVI
competes with a conventional video resizing system [33].
We run two methodologies on the same PC configuration, as
reported in Sec.4.1. An input video consisting of 144 frames
in size of 1280 × 720 is retargeted to 50% of the width in
this experiment. As can be seen, in Lin et al. [33], a time-
consuming process falls in generating the saliency map and
segmentation, approximately more than 1 minute. And the
optimization in the retargeting phase spends about 1.32 sec-
onds. As a result, this conventional system spends minutes
to retarget a frame. Meanwhile, our proposed method is
an end-to-end system, which only needs approximately 2.3
seconds to resize a video with 144 frames (i.e., 0.016 seconds
per frame). It’s worth noting that it could be unfair when
comparing the running time between a conventional system
versus a deep learning-based one since our RETVI also uses
significant cost for training process. Nonetheless, the time
cost for training our RETVI is 10 hours, which is such a
relatively normal training time for a deep learning model.
The workflow and cost make the system [33] cumbersome
to be incorporated in demanding services/devices. On con-
trary, the advantage of running time of RETVI once trained
reveals that it is feasible to embed our scheme into a resizing
application/service.
Potential application. With the abilities of our method in the
above discussion, we can apply it to resize videos to make
them perform well in the 9:16 aspect ratio. This aspect ratio
became popular when smartphones were created with video
capabilities. For example, the optimal measure for an Insta-
gram story is 1080px by 1920px, which means its ratio is
9:16. The same goes for other popular social platforms, e.g.,

Facebook Reels, Youtube Short videos, Tiktok, Instagram
story, etc. Several existing commercial applications, Adobe
Express [2], Veed [3], and Flexier [1] have been providing
streamers with a function to edit the ratio of their videos
before uploading. Nevertheless, these applications share an
identical technique, i.e., a window of size 9:16 is allocated
at the middle of video and they manually crop two sides
of the video. Therefore, they can keep the ratio of object in
the same as in the input video. Yet, in the cases that videos
with multiple objects, retaining the important objects in a
9:16 ratio is challenging. We provide a showcase in Fig. 6,
in which we compare with Adobe Express. As can be seen,
our system does not crop out the tasteful content in this
example. The shape of objects may be smaller than those by
Adobe Express, but it can capture the tasteful moment on
each frame and make it visually pleasing. The visual video
can be seen here 1.

To be specific, in order to change a video to a tall one,
we apply a parameter to control the movement weight in
equation (6). As a result, this equation becomes:Hij

x = esx ×ℜ× ϑ

Hij
y = esy ×ℜ× ϑ

(16)

here, ϑ is a constant greater than 1. This parameter can be
adjusted by users such that the preserved content in the
tall video can catch the user’s expectation. This extension
enables users to have more predictable results when editing
videos with multiple objects to 9:16 aspect ratio. We provide
the results generated by different values of ϑ in Fig.7. As
can be seen, varying value of ϑ yields different retargeting
results. Since the estimated values in matrix H is capable to
avoid distortion, a constant ϑ produces linear increasement.
The bigger ϑ can retain object in the tight ratio with those in
the input video, but it may not retain much content as the
smaller ϑ. Depending on what users interest to preserve, ϑ
can be adjusted to achieve the expected results.

Fig. 6: Our RETVI (the first row) competes with Adobe Express
(the second row) on resizing video to 9:16 aspect ratio.

4.3 Evaluation metrics
To evaluate the performance of the proposed method, we
use four metrics. First, we estimate the distortion degree
of retargeted videos. Second, we measure the stability of

1. http://graphics.csie.ncku.edu.tw/RETVI/CompareAdobe.mp4

http://graphics.csie.ncku.edu.tw/RETVI/CompareAdobe.mp4
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Fig. 7: Predictable results for tall video.

the retargeted videos. Third, we use an image quality
measurement to evaluate the performance of our method
on a benchmark image retargeting dataset. And for the
last metric, we base on human visual perception. In this
evaluation session, we use a set of nine videos and an
image dataset. We collect videos data from Youtube such
that the videos have diverse content, e.g., single-moving
objects, multiple-moving objects, complex backgrounds, or
important content distributed in the entire frame. Four of
them are the camera-move-videos, and the remainders are
object-move-videos. Since few methods focus on retargeting
videos, particularly deep learning-based approach, the com-
petitor we quantitatively compare is a typical video resizing
system Lin et al. [33]. Moreover, the source code of this work
is provided by the authors, hence it is reliable to use and fair
for comparison/evaluation. The image dataset we use in our
assessment is RetargetMe [43], which consists of 80 images.
We evaluate the image data in comparison with four recent
SOTA image resizing methodologies.

E.1. Video quality measurement
As the ground truth for video retargeting is not available,
it is challenging to define the quality of videos after retar-
geting process. Therefore, in this regards, we elaborate as
follows.

We first adopt the bidirectional similarity measure [46]
to evaluate the quality on single video frame. Simakov et al.
[46] propose this measurement to describe the coherence
and completeness between input and output images [29].
It is widely used for quantitative analysis retargeting results
in several works. Given a video with n frames, we have two
sets: a set of the source video frames Vs = {F s

1 , . . . , F
s
n} and

the other is those retargeted by a certain video retargeting
method Vt = {F t

1 , . . . , F
t
n}. On each pair (F s

k , F
t
k), the error

of F t
k over F s

k is expressed as:

Ek(F
s
k , F

t
k) =

1

N

( ∑
p⊂F s

k

min
q⊂F t

k

δ(p, q) +
∑
q⊂F t

k

min
p⊂F s

k

δ(q, p)

)
,

(17)
where k ∈ [1 . . . n], N is the number of patches on F s

k

and F t
k ; δ(.) is defined by sum of squared distance of two

patches. Afterwards, we calculate the mean (ME) of Ek to
define the error degree of a retargeted video. The lower is
better.

E.2. Video stability measurement
To measure the stability of resized videos without annotated
data, we estimate the differences of adjacent frames in the
retargeted video and compare them against those in the

source one. This concept is used in various video generation
applications, e.g., video stylization [11, 25], video resequenc-
ing [26]. The calculation is based on the fact that the source
videos are temporally coherent, and the retargeted results
are rendered from the same frame set with them but in
different ratios. We, therefore, treat the value in the source as
the ground truth to judge the stability degree of the resulting
videos. Accordingly, a generated video with a score that is
tightly asymptotic to the ground truth would be in good
stability.

Given a video with frame set V = {Ft}, t ∈ [1 . . . n], n is
the total frames of V , the difference degree of two adjacent
frames is formulated as:

Dt→t−1 =
1

100
×

∣∣Ft − Ft−1

∣∣
H ×W

, (18)

where H and W are the height and width of frames in set
V .

∣∣Ft − Ft−1

∣∣ returns a residual of two frames, which can
be seen in the supplementary. Accordingly, the stability of
the video is:

STB =
1

n

n∑
t=1

Dt→t−1. (19)

For this metric, the lower score represents a better stability.
In Table 2, we analyze the quantitative evaluation and

comparison using the above two metrics, ME and STB.
With nine videos we prepared, we used Lin et al. [33]’s
method and our RETVI to generate results. As can be
seen, our method achieves a lower distortion on average
compared to Lin’s. The highest ME in our results is 3.17;
two videos have relatively low distortion (i.e., video #4 and
video #9). Inferring to Lin’s results, the distortion level in
theirs is higher than ours in most cases. The lowest ME

of their results is reported at 2.97, which is higher than
our average score. This analysis reveals that the retargeting
results generated by our system are less distorted than Lin
et al. [33]. In terms of stability, Lin’s method and our RETVI
have comparable scores. However, we can see that their
values of STB of the camera-move-videos are relatively
higher than those of the reverse cases. The analysis results
reveal that our model is stable when working on diverse
input videos.

E.3. Image quality measurement
Although our focus is not retargeting images, as mentioned
above, our method effectively applies to single images.
To quantitatively evaluate this performance, we adopt the
Aspect ratio similarity (ARS) [54]. This algorithm evalu-
ates the visual quality of retargeted images by exploiting
the local block changes with a visual importance pooling
strategy. The ARS score represents the geometric changes
during retargeting [54]. For this metric, all of the images
in the RetargetMe are used. We compare the results of
these images generated by our method against a typical
conventional method, multi-operator [42], and three deep
learning-based techniques [10, 48, 57]. The results of multi-
operator [42] are encompassed in the RetargetMe dataset,
while those of WSSDCNN [10], Cycle-IR [48], and SAMIR
[57] are generated from the source code released by the
authors.

The quantitative comparison of the ARS score is shown
in Fig. 8(c). As can be seen, our RETVI achieves a higher
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score comparing all the competitors. Although the devia-
tion is not significant, it is sufficient to demonstrate our
method’s performance. It is because the RetargetMe dataset
encompasses challenging images. A good performance on
this dataset could be assessed as a reliable method.

E.4. User study
We further estimate the performance of our RETVI based
on human visual perception. We conduct a user study on
two groups. In one group (G-1), we recruit 13 users (nine
of them with graphics-related backgrounds). For the other
(G-2), we invite nine users who are either tiktokers or senior
users on the existing social platforms. In G-1, we use nine
videos mentioned in evaluations E.1, E.2 to generate results
retargeting to a half size of width by our RETVI and Lin et al.
[33]. In G-2, we prepare five videos (two with a single object
and three with multiple objects) and resize them to the 9:16
aspect ratio by Adobe Express [2] and our RETVI. In both
groups, participants are shown two retargeted videos at one
time and asked to choose the one they prefer. We receive 117
responses on G-1 and 45 responses on G-2. We then compute
the percentage of votes for each video.

Fig. 8(a)-(b) shows the statistics of users’ preferences. It
can be seen that our method receives majority votes from the
participants in G-1 and G-2 alike. There are two cases in G-1
(e.g., vid#2 and #6), in which users judge Lin’s results are
better than ours. However, the difference is not significant
(0.08 and 0.14, respectively), and the score of our RETVI is
relatively higher in the remaining seven cases (77.78% in
total showcases). The data in G-2 reveals that users prefer
the tall videos by Adobe Express to ours if the videos have
a single object. Yet, our RETVI wins Adobe Express in cases
with multiple objects.

Fig. 8: Analysis of human perception on group G-1 (a) and
group G-2 (b). (c) is the comparison on ARS score.

4.4 Visual comparisons to prior work

Fig. 9 visualizes the comparison between our results and
Lin et al. [33]’s. The visual results reveal that Lin’s results
suffer from some shortcomings. First, several noticeable
artifacts occur in the main object and line structure of the
background region (highlighted by yellow rectangles). The
reason is that their scheme relies on a saliency map [16]
to estimate the movement weight of quad vertices. As a
result, if the content frame is dense, the saliency method
may not be tolerated to analyze the frame effectively. For
example, the shape of the lady in frame #30 and frame #87
is plausible, but the door is shrunk significantly. It is even
smaller than linear scaling. Besides, in frame #199, the line
structure of the door appears quite well, but the head of the

TABLE 2: Analysis on the quality of video results.
(The last four videos are camera-move-videos)

Methods Source video Lin et al. [33] Our method

Testing data STB ↓ ME ↓ STB ↓ ME ↓ STB ↓

1-Talkshow 0.057 3.24 0.062 2.81 0.063

2-Packing gift 0.041 3.71 0.058 2.63 0.055

3-Holding mug 0.052 4.15 0.066 3.16 0.061

4-Cap movie 0.063 2.97 0.071 1.97 0.06

5-Shewing 0.047 3.62 0.051 2.84 0.048

6-Masha 0.081 3.52 0.09 3.17 0.082

7-Dancing 0.075 4.83 0.082 2.69 0.078

8-Moana Movie 0.089 4.29 0.1 2.24 0.09

9-Uptown dance 0.084 3.74 0.094 1.86 0.087

Average 0.065 3.78 0.74 2.59 0.069

lady is distorted. In contrast, our method produces more
visually pleasing results without these distortions. Second,
the generated video by Lin et al. [33] in this case still has
the noticeable flicking artifact. See the video here2 for better
visualization.

Fig. 9: Comparison with Lin et al. [33]

Fig. 10: Comparison between our results (b) with Lee et al. [27]
(c). Results in (c) are quoted from the source paper [27].

In Fig. 10, we provide a visual comparison with Lee
et al. [27], an object detection approach for retargeting video.
As can be observed, there is no artifact or distortion in
their results and ours alike. The noticeable point here is
the ratio of objects in the retargeted frames. With the goal
that the contents inside the bounding boxes must remain
intact in the retargeted frame, Lee et al. [27] do a good job,
but their appearance is in a close ratio with those in the
input frames. For example, visually inspecting this figure,
the background contents (e.g., the door on the left, the wall

2. http://graphics.csie.ncku.edu.tw/RETVI/CompareLin.mp4

http://graphics.csie.ncku.edu.tw/RETVI/CompareLin.mp4
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on the right, or the plants) are scaled up when the width
increases in this experiment. However, the shape of the lady
is hard to recognize the changes in the ratio over the source
frame. These may reduce the harmonization of the results.
In contrast, our method does not suffer as they do. Our
results are more harmonious in both background contents
and important objects. The visual video can be seen here3.

Apart from the above comparisons with video retarget-
ing methodologies, we further discuss the ability of our
method via visual comparison with four recent state-of-the-
art image retargeting systems, WSSDCNN [10], SAMIR [57],
grid encoding model [22] and Cycle-IR [48]. Detail of discus-
sion and visualization on this comparison is presented in the
supplementary file.

4.5 Ablation Study
A.1. Verify the effectiveness of CFA module
The CFA module is proposed to alternate the time-
consuming preprocessing phase in such a conventional
video retargeting system. The CFA is structured as an im-
provement from a plain UNet design. Our proposed CFA
can capture more fine-grained feature, which is an essential
key for our retargeting system to tolerate with diverse
content videos. We demonstrate the effectiveness of CFA
module by removing it from our training and train our
RETVI with the plain UNet [41]. We show these ablation
analyses in Fig. 11, in which the visualization of Grad-CAMs
[44] and energy maps are obtained from our network with
and without the CFA module. The results reveal that with
the CFA module, our network has much larger attended
regions. This enables our RETVI to play with more complex
video contents without suffering from distortion and linear-
like appearance.

Fig. 11: The Grad-Cam visualization (b-2, c-2) and energy map
(b-1, c-1) of our CFA module (c- columns) versus the standard
UNet (b- columns).

A.2. Study on the impact of loss functions
Performance of our RETVI is affected by the optimization
of the loss functions. Here, we discuss the impact of each
component we configured in the objective function. To ver-
ify this, we remove in turn each loss function in Eq. (8) from
our training. The ablated results are presented in Fig. 12.
It is obvious that without each component in the total loss
function, it is challenging to obtain ideal retargeting results.
To be specific, we can see that without the guidance of Lcri,

3. http://graphics.csie.ncku.edu.tw/RETVI/CompareLee.mp4

the important region in the frame is damaged. On the one
hand, the object in the foreground is shrunk linearly, on the
other hand, the background captured as critical region by
our CFA is distorted. We also discuss the effect of the global
loss Lglo in Fig.12(b). Without Lglo, we fail to preserve the
initiative of the content frame. Meanwhile, removing Lfid

could yield resizing form without damaging the content
but blurry effect is a negative side. The full configuration
facilitates our model producing visual pleasing result. Also,
the absence of Ltem causes serious flickering artifact in the
generated videos. The aid of this loss in our objective serves
resulting videos in good stability. See the ablated result of
Ltem here4.

Fig. 12: Ablated results for loss function. The resized results
(second row) in this experiment are resized to ratio 0.7.

Limitation. In the cases that the input videos are the
landscape scenes or too dense, our method may not perform
well. The failure phenomenon here is that the retargeted
videos are quite similar to linear scale. We note here that
distortion does not occur in these cases. It is because our
ADE module fails to differentiate which object/region is
important. Thus, the estimated energy of pixels is relatively
identical. Another limitation falls into the failure of the loss
Lglo. Since we rely on performance of ResNet to define the
integrity of estimated frame versus the input one, the failure
of ResNet leads to Lglo to be disabled. The Lglo performs
well in most of the cases, but it is not guaranteed to be
stable in the videos with multiple objects distributed in
entire frame. Another limitation is that if the main objects
located in the leftmost of rightmost, the resized results may
not appealing due to the cropping effect as we discussed
in Sec.4.1. An example in this case is visualized in the
supplementary file.

5 CONCLUSION

In this paper, we propose a new RETVI framework for retar-
geting videos. With two modules configured in our method,
our RETVI presents high performance in handling videos
with diverse contents and produces visually pleasing results
when retargeting to arbitrary aspect ratios. The analysis and
experimental results demonstrate that our method substan-
tially advances prior works. With the fast running time of
our end-to-end RETVI, our system is potentially embedded
into a video resizing application/service. We perceive that
our system can bypass the computational bottlenecks in
conventional methods. And it is potential to extend for
stereo image/video retargeting. For the shortcoming we

4. http://graphics.csie.ncku.edu.tw/RETVI/TemporalLoss.mp4

http://graphics.csie.ncku.edu.tw/RETVI/CompareLee.mp4
http://graphics.csie.ncku.edu.tw/RETVI/TemporalLoss.mp4
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discussed, we plan to investigate techniques that configure
the loss function to be independent from the existing feature
extractor. In terms of cropping effect, a possible way can
improve is automatically define physical region of the im-
portant content. This knowledge could serve us to shift the
rendering window more appropriately. Besides, developing
a text-driven framework to consider semantic issue in the
retargeting videos and investigating technique to retarget
videos with enlarging and reducing two dimensions simul-
taneously are also a possibly extension in our near future.
This could be a potential way to visualize users’ expectation
in such a video retargeting system.
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