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Abstract—If the video has long been mentioned as a widespread visualization form, the animation sequence in the video is mentioned
as storytelling for people. Producing an animation requires intensive human labor from skilled professional artists to obtain plausible
animation in both content and motion direction, incredibly for animations with complex content, multiple moving objects, and dense
movement. This paper presents an interactive framework to generate new sequences according to the users’ preference on the starting
frame. The critical contrast of our approach versus prior work and existing commercial applications is that novel sequences with arbitrary
starting frame are produced by our system with a consistent degree in both content and motion direction. To achieve this effectively,
we first learn the feature correlation on the frameset of the given video through a proposed network called RSFNet. Then, we develop
a novel path-finding algorithm, SDPF, which formulates the knowledge of motion directions of the source video to estimate the smooth
and plausible sequences. The extensive experiments show that our framework can produce new animations on the cartoon and natural
scenes and advance prior works and commercial applications to enable users to obtain more predictable results.
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1 INTRODUCTION

V IDEO has long been a widespread media form in our
daily life. In addition to visualizing, the sequence

of animation in a video is mentioned as storytelling for
people. Animating production is usually a specialized and
time-consuming job, requiring intensive human labor from
skilled professional artists. In traditional cartoon animation
(i.e., cel-based and path-based animation) the procedure is
complicated and needs much repeated manual labor, and
a large amount of cartoon materials have been produced
during this procedure. If all these material can be effectively
managed and reused, we not only can speed up the time
of producing an art but also easily create variations of
the existing material. Although the recent computer-aid
techniques have removed the burden of artists from tedious
work in producing new animations, understanding the con-
tent (i.e., character’s gesture, background scene, etc.) and
finding smooth transitions, are still challenging. The existing
commercial applications, e.g., Toon Boom, Adobe Animate,
mostly serve the capability on cartoon characters with basic
animations. They lack diversity in animation styles and
cartoon scenes. Therefore, it’s necessary to establish and
develop a cartoon images management and retrieval system
supporting interactive fast animation making, so that the
artists can pay more attention to the creative work, rather
than those repeated work like colorizing, repainting, etc.

This problem has been explored. Previous work on this
domain can be divided into feature-based and sequence-
estimation methods. In feature-based methods, research at-
tempts have been made to get knowledge on image content
[5, 28, 26, 3]. Fried et al. [5] train a convolutional neural
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network to map images into lower dimensional space and
define their similarity by a distance calculation. Yu et al.
[29] propose an algorithm to construct the feature space
according to the shape context of the character in the image
and the user’s label. However, their dataset is labeled by
human judgment, which is difficult or time-consuming to
collect. Then, after projecting images into the feature space,
the distance metric between two images can be considered
as the similarity distance. Nevertheless, the user still needs
to manually label the relation between the data. Yang et al.
[26] extract three different features of the character in the
image’s shape context, color histogram, and motion direc-
tion. These features are then fused to result in the feature
vectors of the character images. But, the segmentation of the
character images required by their algorithm is not easy to
generate correctly without professional skill.

In contrast, the sequence-estimation methods investi-
gate different approaches to generate a plausible animation.
Schödl et al. [21] train a binary classifier and apply the Q-
learning algorithm [13] on the images library to produce
arbitrary length video sequences. Yu et al. [27] use a semisu-
pervised algorithm to select the next frame of the initial
frame according to the similarity distance. Then, they will
treat the next frame as the initial frame and repeat this
iterative process to generate the results. Recently, Morace
et al. [17] construct a graph by the similarity distance of
images and compute the shortest Hamiltonian path for re-
constructing the sequence from a set of un-ordered images.

However, there are three major drawbacks in the above
research. First, they solely focus on cartoon characters.
Second, feature extraction and the distance metric used to
measure such features are developed independently. And
third, with these two mentioned issues, such a prior system
is not sufficient to challenge the input clip that consists
of dense motion and content. Therefore, we address the
demanding problem by combining knowledge learned from
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a self-trained network and modeling them in a path-finding
strategy to produce plausible and smooth videos efficiently.

In this paper, we propose a framework to address the
above challenges. We aim to create new smooth sequences
according to users’ preferences of the starting frame. We
do not know the sequence we are to generate except the
starting frame. Our designed framework attempts to mini-
mize the artifacts caused by cold transition and the flip-flop
phenomenon. The proposed framework pays attention to
the pairwise relationship on both content and motion direc-
tion of an image and others in the image gallery. Our es-
sential contribution to reducing user effort is automatically
propagating user preference to predict a future sequence
in a meaningful manner. To achieve this, we present a
novel path-finding algorithm that absorbs the knowledge of
features in our self-defined network and motion properties
in the ground truth, which remedies the drawbacks of prior
work.

Our framework consists of an online knowledge learn-
ing and an offline sequence generation stage. The online
stage learns the feature correlations of pairs of images in
a given image set. These feature correlations serve as the
initial guidance for new paths explored in the offline stage.
The content of frames in real-world videos is complex in
both background and foreground. Meanwhile, to model the
user’s selection to a plausible and novel animation, we
need to calculate a meaningful degree of interchangeability
between any two frames. We achieve this by proposing
a neural network model, Recursive-based Semantic Feature
Network (RSFNet), to learn the high-level representation of
images. It is because the neighborhoods tend to be selected
as correlation, which may prevent us from exploring new
animations.

In the offline stage, the correlation of images learned in
the online stage is performed in a graph. Users can specify
their preferences for any node on the graph as the starting
frame of their desired animation. Besides the meaningful
degree, we need to preserve the temporal coherency in
transitions. We tackle this by proposing an algorithm, Single-
source Distillation Path-Finding (SDPF), in which we embed
constraints to interpret potential candidates for plausible
animations. In summary, our main contributions are as
follows:

• A framework for resequencing videos, which exploits
the feature correlation and the motion direction be-
tween frames to efficiently produce plausible and
smooth video results.

• A framework to extract the representative feature vec-
tors of the images in general style without requiring
a large amount of dataset. And, the distance of the
vectors can properly match the similarity of the images.

• A novel path-finding algorithm that can synthesize
the resultant videos with smooth transitions from the
image collection. Moreover, the random selection of our
algorithm can increase the diversity of the results, and
thus make each resultant sequence distinct from the
others.

• Our overall system significantly reduces interaction
time required to produce desired results. Besides, the
proposed method works well in both cartoon scenes

and natural videos, and therefore this enables users to
obtain more predictable results.

2 RELATED WORK

2.1 Feature Extraction and Dimension Reduction

Researchers seek different approaches in analyzing images
to learn the correlation between their representation. Os-
adchy et al. [19] propose an energy-based model to detect
faces with different views. Yang et al. [26] use multiple
features of cartoon characters to project images into lower
dimensional space. Zhang et al. [31] provide a flexible
way for the extraction and completion steps to reflect the
unique characteristics of cartoon animation. The transduc-
tive algorithm [6] can fuse these different features together
and construct a model which projects the character images
into lower dimensional space. Combining multiple types
of features [29] has achieved great success in many areas.
After extracting the feature vectors from the character’s
shape in the image, users can provide image pairs’ positive
and negative relationships to restrict the distance between
feature vectors.

With the revolution of deep learning technologies, re-
searchers develop the alternative promising approach. Fried
et al. [5] analyze patches by embedding them to a vector
space in which the texture of image patches are consid-
ered to define the similarity of them. Holden et al. [10]
use an autoencoder for human manifold. Zhang et al. [30]
propose an autoencoder architecture for image clustering.
They first train the local stacked contractive autoencoder for
the neighborhoods of training dataset based on Euclidean
distance metric. Zhang et al. [33] use a convolutional autoen-
coder network to project the images into lower dimensional
space, and the L2 distance between the latent vectors are
considered as the similarity of the images. Morace et al.
[17] utilize an off-the-shelf network LPIPS [32] to compute
the similarity distance between images. Most recently, Xu
et al. [25] introduce a dual-task deep learning scheme for
separating the structure content in a cartoon animation, i.e.,
content video and effect video.

Contrasting the above approaches, we handle arbitrary
animation objects, including cartoon and natural scenes,
rather than only focusing on cartoon characters. We get the
knowledge of image representation by a self-defined net-
work which is sufficient to capture comprehensive features.
The network requires much less training dataset but has
better performance than those in prior work. Plus, it enables
us to be independent from such an intermediate network.

2.2 Images sequence ordering

Ordering a collection of images is usually considered as
path-finding problem in a weighted graph, in which images
are represented by vertices and the weights of the edges are
the similarity of two end points, and other constraints such
as temporal ordering, path smoothness, or user-control.

A variety of methods have been early developed to
create sequences [3, 21, 20]. Given a starting and ending
frame, the system proposed in de Juan and Bodenheimer [3]
traverses on the manifold to re-sequence an existing cartoon
library to a novel animation. Video textures [21] uses L2
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distance of raw pixels of images as similarity and applies
Q-learning algorithm [13] to generate an arbitrary length
video sequence whose motion is similar to input video.
Their method can produce convincing results in which
input video has repetitive motion or unstructured stochastic
motion. However, as the way to calculate similarity cannot
adequately describe the high-level features of images, the
case of complex structured motion such as human body
motion will fail. To overcome this problem, Schödl and Essa
[20] extract six specified features from the key-frames to
train a binary classifier. This classifier will judge whether the
transition between the key-frames will be accepted or not,
and the cost of the transition depends on their original video
sequences. They use the beam search to find the smoothest
sequence. For the better result of the beam search, a hill
climbing algorithm is used to interactively minimize the
total cost of the sequence from initial random.

The seminal work has motivated researchers to inves-
tigate deeper recently [27, 28, 26]. Yang et al. [26] present
a cartoon gesture space to cartoon retrieval and synthesis.
They use color, shape, and motion information in dissimi-
larity estimation. Yu et al. [27] propose a semi-supervised
algorithm to create new cartoon animation from the image
library. They extract the shape context of the characters in
the images, and calculate the similarity distance based on
the shape correspondence. Inspired by these methods, Yu
et al. [28] use a semisupervised multiview subspace learning
algorithm to encode different features in a unified space.
To model the diverse dynamics, Khan and Storkey [14]
introduce a deep generative model for image sequences,
in which they split the motion space into subspaces and
perform a unique Hamiltonian operator for each subspace.

Some different approaches are recently introduced [33,
17]. To create a sequence, Zhang et al. [33] embed image
collection into a convolutional autoencoder network. They
then build the proximity graph based on the complete graph
of the latent vectors and apply Monte Carlo algorithm to
find the smoothest animation sequence. Meanwhile, Morace
et al. [17] remove the last 10 percent outliers according to
the generalized gamma probability distribution to fine-tune
the smoothness of sequence. Then, they find the shortest
Hamiltonian path to generate the resequencing results.

The sharp contrast between our framework and theirs
[3, 28, 26, 33, 17] is that we develop a novel path-finding
algorithm SDPF to generate new sequences with arbitrary
starting frame. Our SDPF is faster than a greedy path-
finding, effective to explore novel sequence and control the
motion consistency.

3 SYSTEM OVERVIEW

The framework of our video resequencing is illustrated in
Fig.1, which consists of two primary models: a semantic
relation graph (SRG) model for representing the relation of
images in the given set of images, and a Single-source Dis-
tillation path-finding (SDPF) algorithm for exploring a path
on SRG to resequence the video. Our system takes as input
a video, we aim to generate new smooth sequences with
arbitrary starting frame while maintaining the consistency
in both content relations and temporal coherency.

Fig. 1: Our framework for regenerating video sequence.

The SRG models the set of frames in the given video to
a completed graph. RSFNet explores this, i.e., the network
we propose in this paper. RSFNet shoulders the task of
converting images ({xi}) into feature representation ({vi})
in which every single vi represents a node in SRG. To
describe the semantic relation of vi, we merge the triplet
of recursive-based encoders (called R-Encoder) as a single
one, i.e., RSFNet, and train it with a distance loss function.
As a result, the connected edges in SRG are assigned by the
pairwise distances between feature representations.

Instead of naively traversing the graph and finding the
shortest path, which potentially prevents us from exploring
a new sequence, we find paths by the proposed SDPF algo-
rithm. Conceptually, SDPF firstly estimates the candidates,
which are potential to construct a new sequence, and then
distills them through constraints to define the final node at
each path-finding-iteration. Finally, the sequence of nodes in
the path is mapped to the corresponding frames to produce
smooth video results. We subsequently elaborate on each
module.

4 GRAPH GENERATION WITH RSFNET

Given a set of frames, we now aim to build a complete
graph of this set prior to the resequencing manner. As
mentioned in the related work, we propose a network
RSFNet to get knowledge on their feature representation
and embed the samples to a specific metric space where the
similarity or distance between any two samples is clearly
represented. Once the distance metric is learned, feature
representations and distance are capable of reflecting the
relation of input images. RSFNet is a reusable structure that
reduces the computational cost and efficiently represents
image information. RSFNet shoulders two significant roles
in the graph generation: firstly, RSFNet calculates latent
vectors corresponding to the given frames. Each vector is
treated as a node in the graph. Secondly, RSFNet is trained
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with a proposed distance loss to infer the similarity of latent
vectors. This manner facilitates the distance of latent vectors
more accurate. The details of the proposed framework are
presented as follows.

Fig. 2: (a) Architecture of RSFNet; (b) Zoom-in of an R-Encoder;
(c) Structure of NCM and C1R block.

4.1 RSFNet Structure
In a common Convolutional Neural Network (CNN) frame-
work, an encoder converts the input image x into a repre-
sentation vector r (r = Φ(x)). The architecture of an encoder
Φ(.) depends on the input in a specific application. For
instance, in the application of image classification, the CNN
is a good choice. When applied to video resequencing, such
an off-the-shelf CNN might not be suitable since contextual
information in a specific frame is necessary for generating
new sequences. Besides, human often relies on a high-
level semantic understanding of the video contents, usually
after viewing the whole sequence, she/he can decide which
frame should be selected the next frame in the sequence.
Therefore, it is necessary to differentiate the target sequence
scene to make the resultant sequence semantic, reasonable,
and smooth. At this point, an encoder with a pure CNN
structure may lack sufficient information for such an ap-
pealing sequence.

Motivated by the above reason, we design our RSFNet
by the triplet of R-Encoders, which share the parameters,
i.e., weights and biases. Each R-Encoder consists of two
modules, Coarse Feature Extractor (CFE) and Recursive Feature
Fining (RFF). The design is visualized in Fig.2. For the CFE
module, we treat it as an extractor to obtain the initial
feature maps. The backbone network of CFE is based on the
VGG-19 network [23]. This pre-trained network is widely
used in several applications in a feature extraction manner.
Hence, it is reliable to be considered a good feature extractor.
Furthermore, VGG-19 has been trained on a large-scale
dataset. With this strategy, we can reduce the burden in
training for this process. We solely use the first four blocks
and remove the fifth block from the original VGG-19 frame-
work since it lacks pixel-wise content information [7]. An in-
put image I is firstly fed to CFE. Let matrix Xi ∈ RHi×Wi×k

denote corresponding feature maps produced by four layers
of CFE. Here, k is the number of channels of each feature

response. Hi and Wi are respectively the height and width
of the feature maps in layer i (i = 1 . . . 4). As shown in Fig.2-
(b), the feature maps Xi are enhanced along the channel
and space dimensions to obtain the feature maps Fi by
RFF module. In other words, instead of directly utilizing
feature maps from CFE, we propose an RFF module to
integrate with CFE to produce features that can depict the
variety content in frames. The effectiveness of this design is
visualized by the analysis in the later session A.1.

The Recursive Feature Fining (RFF) module is the core
of an R-Encoder, which shoulders the task of preserving
contextual information of images during encoding into la-
tent space. RFF is formulated by recursively integrating
feature maps of CFE. A straightforward technique could
be used instead of RFF is that re-scaling the feature maps
obtained from CFE and combining them together. However,
the feature extraction from a backbone, e.g. either VGG or
ResNet, is performed by a repeated process of convolutional
and max-pooling operations. These extracted features by
themselves loss the low-level information that is likely to
aid in discriminating object regions from the background
regions. Thus, such a simple technique, i.e., re-scaling, might
neglect smaller objects or information in the background
regions and eventually decrease the capability of the en-
coder. In the structure of our RFF, we embed two blocks,
NCM and C1R. NCM is to normalize the input feature
maps before the concatenation. Meanwhile, the C1R block’s
task is to compress the size of feature maps without losing
information.

The network architecture of the proposed RFF is shown
in Fig.2-(b). Four feature maps with different resolutions
obtained from CFE (Xi) are taken as the inputs of the
RFF. Mathematically, the above process can be recursively
expressed as:{

Fi = Ψ(φ(Fi−1 ⊗Xi)), (i = 2 . . . 4)

F1 = Ψ(X1)
, (1)

where Ψ(.) and φ(.) denote the functions from the NCM
block and C1R block, respectively; ⊗ is the concatenation
operation. By concatenating two different feature maps,
resultant feature maps Fi (i > 1) simultaneously captures
two different receptive fields.

To be more specific, NCM is designed to en-
hance the spatial representation for the input fea-
ture maps from VGG-19. This block performs the
Normalization→Conv3×3→MaxPooling structure. Output of
input feature maps F in passed through NCM is performed
as

Ψ(F in) = P (C3(Norm(F in))), (2)

where P (.) represents the Max-Pooling operator; C3(.) indi-
cates the standard convolution with the kernel size of 3× 3;
and Norm is a normalization operator.

C1R employs a 1 × 1 point-wise convolution and a
residual block. Our residual block consists of two batch
normalization (BN) layers and two 3 × 3 convolutional
layers. Note that, compared with the basic residual block
[9], our residual block removes the RELU layer after the
first convolutional layer to preserve more spatial details. See
Fig.2-(b), immediately after the concatenation which is used
to transmit the information of these two distinct layers, this
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block is embedded to learn the correlation of feature maps
from different layers. This process is expressed as:

φ(Fc) = C1(Fc) +BN(C3(BN(C1(Fc)))), (3)

where Fc is the resultant feature maps after the concatena-
tion phase. C1 represents the 1× 1 point-wise convolution.

With our above design, some benefits can be gained.
First, using a pre-trained network as a backbone signifi-
cantly reduces the training cost. Second, RFF can be easily
embedded into an existing neural network. In the design of
C1R block, 1 × 1 convolution is to increase channels corre-
sponding to the previous layer. Meanwhile, residual connec-
tion sufficiently mitigates the gradient vanishing problem,
which usually occurs when training the deep network.

We need to build the embeddings of frames such that
they have the following properties: (1) two similar frames
produce two embeddings so that the mathematical distance
between them is small, and (2) two very different frames
produce two embeddings so that the mathematical distance
between them is large. To do that, we model RSFNet that
contains the triplet of R-Encoders, which use the same
weights while working in tandem triplet of different input
vectors to compute comparable output vector. In our train-
ing, the distance loss Ld is used as the objective function to
reinforce the distance between two latent vectors to match
the similarity of the images well reflect pixel-level image
similarity. We train RSFNet using a set of triplet images
- an anchor xa, its positive xp, and negative xn. Detail of
preparing such triplet data is discussed in our supplemen-
tary material. For three embeddings ra, rp, rn of the images
xa, xp, xn, respectively, the formula of the distance loss is as
follows.

Ld = −z log
(
ξ
)
+ (z − 1) log

(
1− ξ

)
, (4)

where
ξ = γ(∥ ra − rn ∥2 − ∥ ra − rp ∥2), (5)

and

z =

{
1, if dp(xa, xn) > dp(xa, xp)

0, if dp(xa, xn) < dp(xa, xp)
. (6)

Here, γ(.) is the sigmoid function [18], used here to ease the
severe gradient problem. dp(.) is the PSNR measurement
[11]; Eq.(6) is used to get the initial knowledge about the
similarity of image pairs. It indicates which term in Eq.(4)
will be visible during the training. Therefore, z can be
treated as an indicator to determine whether xa is similar
to xn or xp. We note here that using any pixel-level distance
metric in Eq.(6) could yield an equivalent effect. It is clear
that Eq.(4) encourages the embedding of xa to be closer to
xp than to xn. Optimizing these terms boosts the margin be-
tween distances of negative pairs and distances of positive
pairs. The effectiveness of this formulation is discussed by
ablated results in later session A.2.

4.2 Learning-Based Euclidean metric

To define the weight of each edge in the complete graph, we
calculate the distance of all pairs of latent vectors. The dis-
tance metric used in this manner should satisfy two criteria:
(1) it can well reflect the distance of images, i.e., a distance in

low dimensional space should be consistent with the content
correlation of images, and (2) not too expensive to reduce
the burden when the number of given images is significant.
Our early experiments considered five different distance
metrics: the Hausdorff distance, Earth Movement Distance
(EMD), the LPIPS distance, SSIM, and the Euclidean dis-
tance. However, Hausdorff and EMD have a good perfor-
mance on specific data, i.e., cartoon characters [3, 26]. LPIPS
is an expensive computation metric, it takes approximately
five seconds on an image pair. SSIM and Euclidean distance
metrics are potential. However, Euclidean metric is the most
common use of distance measure and known as simple
distance. When data is dense or continuous, this is the
best proximity measure. Thus, we consider Euclidean as the
baseline in learning the relation of images in our current
application. It’s worth noting that directly using pixel-level
distance metrics, such as SSIM or Euclidean, without Eq.(4)
is not sufficient in our current application. The reason is that
we target to explore new transitions on the diverse content
frames. Simply employing a plain distance metric without
the objective function Ld prevents us to reach this goal. This
could be seen in the ablated visualization A.2

Instead of directly using Euclidean distance to measure
the metric value between two features, in RSFNet, we apply
deep learning technique to further learn their similarity.
When the self-defined metric space is an Euclidean space,
the metric value between two samples is a distance metric,
which is defined as:

dij(vi, vj) =∥ R(xi)−R(xj) ∥, (7)

where R is our trained RSFNet; xi and xj are the corre-
sponding frame of embedding vi and vj , respectively.

5 SINGLE-SOURCE DISTILLATION PATH-FINDING

In this section, we present our approach of finding the path
on the complete graph to construct new sequences. Let Ω be
the set of latent vectors vi obtained from our RSFNet and
dij be the distance between two latent vectors vi, vj ∈ Ω
defined by Eq. (7). We construct a graph G = (V, E) in which
each node Vi ∈ V represents a latent vector vi ∈ Ω and the
weight of each direct edge eij ∈ E (from Vi to Vj) is assigned
by the corresponding distance dij(vi, vj).

Once graph G is constructed, our system lets the user
choose a node randomly. An expected sequence can be
constructed by traversing the graph starting from this node.
A possible and straightforward way is finding the shortest
path on the graph with the selected node because the edge of
a pairwise node reflects their similarity, i.e., if the weight of
an edge is smaller, the connected nodes are more similar and
vice versa. Hence, this naive strategy is tolerant of plausible
sequences if the input clips do not have dense motion and
content.

The question here is - How do we construct the sequences
that are different from those in the input video? Resequencing
videos without pre-processing (e.g., extracting objects from
the background), we may face a range of challenges in
image content (e.g., the video has multiple moving objects,
dense motion directions, or with complicated background).
Generating new sequences while avoiding flicking artifacts,
such a classic shortest path-finding technique by itself is not
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tailored. The reason is that the resultant path found by this
technique, such as [17], tightly reflects the similarity of the
sequence in the given clip. It may yield a similar sequence
to the given sequence. Otherwise, it may fall into chaotic
motion if the clip has dense movements. Yang et al. [26]
tackle this issue by extracting the cartoon character from the
image content and using the motion direction feature (MDF)
to evaluate the gesture dissimilarity. However, they focus on
the frames that have a single cartoon character. If the frames
demonstrate the motion of multiple objects, using MDF
might be insufficient. Recent work by Morace et al. [17] also
suffers from this issue if there exist dense motion directions
(Chinese ink in Fig.5-(K)). To overcome these challenges and
produce new sequences, we propose an algorithm called
Single-source Distillation Path-Finding (SDPF) to find the path
when traversing on the graph.

When designing SDPF, we base on the fact that the
adjacent frames have to be consistent in content information
and temporal coherency in a particular clip. Thus, in finding
a new path that satisfies these two aspects, we consider
them whenever choosing a node at every step. We call the
phenomenon, which is caused by missing one of the two
aspects, as a cold transition. More specifically, we model our
SDPF to work under the control of two-layer distillation.
Given a graph and a starting node, the first layer is to
distill the set of candidates, which are the potential to be
consistent with the content. Taking this set as input, the
second layer estimates the plausible motion direction that
could be generated and distill the candidates on the set that
are potentially temporally coherent. In the following, we call
the current node Vc; our SDPF aims to find the adjacent node
of Vc, denoted as Vc+1. We visualize the difference of Single-
source shortest PathFinding (SSPF) versus our proposed
SDPF in Fig.3(a), (b). SSPF chooses only one node, which has
the shortest cost, to add to the path. In contrast, our SDPF
considers a number of nodes, e.g., three nodes in this exam-
ple, which have the cost lower than a designated threshold,
as the potential candidates in equivalent probability to be
added to the path.

There are several benefits of using our SDPF algorithm.
First, we can explore new paths since we do not strictly
follow the theory of the shortest path. Second, we can
control the motion direction to be locally consistent in clip
segments and globally realistic in the generated clip. Third,
it is faster than such a greedy strategy. We subsequently de-
scribe how we model the constraints in our SDPF algorithm.
The pseudo-code of SDPF is presented in Algorithm 1.

5.1 Content-aware distillation
In this layer, we find the set of candidates that have relevant
content to the current node Vc rather than finding the node
that have smallest distance to Vc. Obviously, if Vc+1 is
the node that has the smallest weight to Vc among the
directed nodes of Vc, this may yield the resultant sequences
that are similar to the source sequences. Thus, we find the
candidates that are potential to explore new transitions. This
saves the generated video from flicking artifacts due to the
“cold transition” between them. We construct a set S1 of
candidates that are relevant to Vc as:

S1 = {Vi ∈ G : eci < η; s.t. η =

∑
eij
N
}, (8)

Algorithm 1 SDPF Algorithm

Input: Set of latent vectors {vi}, distance metric {dij}
1: V ← {vi}, E ← {dij};
2: Construct graph G = (V, E);
3: Vo ← user’s selection;
4: Initialize a list P to subsequently push the selected node

to the path;
5: Add Vo to P
6: Vc ← Vo; /* Vc is the node at current state*/

/* Distillation in the first layer*/
7: for each node Vj ∈ G(V − P) do
8: if ecj < η then /* η is defined in Eq.(8)*/
9: Add Vj to S1

10: end if
11: end for

/* Distillation in the second layer */
12: for each node Vk ∈ S1 do
13: if Vc ∈ LMS then
14: S2 = Cd(Vc, Vk) + Ct(Vc, Vk)
15: else
16: S2 = Ct(Vc, Vk)
17: end if
18: end for
19: for each Vi ∈ S2 do
20: Compute possibility Ω for each Vi by Eq.(20);
21: end for
22: Choose Vi by randomly selecting Ω;
23: Add Vi to path P ;
24: Update Vc ← Vi

Output: Sequence of path P

where N is the total number of nodes in the graph G. In this
equation, η is the threshold that represents for the mean of
the weights in the graph G. By this configuration, an edge
has the weight that smaller than η could be considered as a
“potential candidate”. It is hypothesized that we set another
variable such as top k% of the candidates that have the
closest weight to the minimum weight of the graph, the size
of S1 is increasing with the total number of frames in the
given video. If the clip is short, the size of S1 is small, and
thus it might be not sufficient to explore a new path. If the
clip is long, the size of S1 accordingly increases, and thus
it might include the wrong candidates (i.e., the candidates
are not correlated). Therefore, the threshold η < mean(.) is
tolerant with different amounts of frames and able to avoid
these phenomena.

With Eq.(8), we can eliminate the nodes that have low
reliability and drive our focus on the nodes that are highly
potential to be content correlation. Each element of S1 repre-
sents for a possible way that we can explore from Vc without
suffering from cold transition. Note that the size of S1 varies
along with Vc at each iteration. And in S1, the nodes are
treated equivalently, i.e., the probability of choosing a node
is independent with the edge weight.

5.2 Motion direction-aware distillation
Having computed the set S1, the next question is - which
candidates in this set can yield a plausible motion direction?
Note that here “plausible” refers to both backward motions,
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forward motions, or any movement but avoiding the results
from the flip-flop and jumping phenomena. To do this, we
propose to our SDPF algorithm two constraints: Directional
distillation and Coherent distillation. Detail of each constraint
is described as follows.

5.2.1 Directional distillation

This constraint, denoted as Cd, is proposed to control the
consistency of motion direction. To achieve this, linear mo-
tion segment (LMS) is the factor we consider here. LMS is
ubiquitous in real-world videos. Readers can see the visual
example of LMS here 1. Resequencing such videos may fall
into two kinds of motion-noise: (1) flip-flop phenomenon
due to the LMS-frame is not recognized, causing inconsis-
tent direction, and (2) abnormal motion since both backward
and forward motions yield smooth transitions. Therefore,
there is a need to recognize the major motion direction in
frames as well as detect the LMS to avoid these motion-
noises.

Fig. 3: Visualization of SSPF (a) and SDPF (b). (c) is visualiza-
tion of motion tendency of each frame (i.e., blue arrow). The
frames in green rectangle belong to an LMS, i.e., the adjacent
frames satisfy Eq.(11). (d) is visual constraint Cd in Eq.(12), here
the node outlined by double circle means it is an LMS-frame.

Let X = {xa}na=0 be the sequence of frames xa in
the given video, n is the number of frames, we first cal-
culate the optical flow [24] of X and denote this set as
Y = {Fa→a+1}n−1

a=0 , here Fa→a+1 is the optical flow of frame
xa to xa+1. To focus on drastic changes in the optical flow,
we normalize each element in Y as follows:

N̂ij =
∥ Fij ∥2 −minij ∥ Fij ∥2

maxij ∥ Fij ∥2 −minij ∥ Fij ∥2
. (9)

We denote this set as Ŷ = {N̂a}n−1
a=0 . Video frames may

have various motions, e.g., motions of main object(s) or
light motions of background objects. To recognize the major
motion direction in frames, we mask on each frame a value
called “motion tendency” (T ), as shown in Fig.3(c). This value
represents for the motion direction that dominates in a
frame, which is formulated by average normalized vectors
of partial optical flow:

T = ∠

(∑
N̂ij

n×m

)
, s.t., N̂ij > σ

Fij

∥ Fij ∥2
, (10)

where m,n is the width and height of frames, respectively.
Threshold σ is set to 0.5 in our experiments to ensure only
huge changes to be concentrated.

1. http://graphics.csie.ncku.edu.tw/SDPF/LMS.mp4

Thereafter, we base on motion tendency in frames to
detect LMS-frame, the frame that belongs to an LMS. The
definition of an LMS-frame is expressed as:

∃j, k ∈ N : j ≤ i ≤ j + k, k > 2, s.t. |Tj − Tl| ≤ δ, (11)

for all l ∈ [j, j+k]. In our experiments, we compute motion
tendency of frames and mask them with motion tendency
value if the frames belong to LMS prior of path-finding
manner, and threshold δ is set to π

4 .
Finally, we configure the constraint for directional distil-

lation as:

Cd =
∣∣Tc−Tk

∣∣ ≤ ξ, if xc ∈ LMS&∃Vk ∈ S1 s.t., xk ∈ LMS,
(12)

where Tc, Tk is the motion tendency of the corresponding
frame xc, xk of the node Vc, Vk, respectively, k ∈ [1 . . . n1],
and ξ is set to π

3 . Here, n1 is the size of set S1. The condition
in Eq.(12) reveals that constraint Cd only works if the
corresponding frame of Vc is an LMS-frame and there exist
an LMS-frame in S1. Otherwise, we skip this constraint. The
visual sample can be found in Fig.3(d). We can see that, Vc

and two of its three candidates are LMS-frames. In this case,
Eq.(12) is used to avoid flip-flop phenomenon. We analyze
the effectiveness of this constraint with ablated results in
session A.3.1.

5.2.2 Coherent distillation
The distillation in this layer is proposed to maintain the
temporal coherency in generated sequences. Yang et al. [26]
extract cartoon characters from frames and compute the
angle of two motion direction features of the characters to
define the differences of motions. In the cases that video
frames consists of multiple moving objects, this technique
is not practical. We instead propose a Pixel-wised Motion
Similarity Measurement (PMSM) to shoulder the smoothness
of generated sequences.

As named, PMSM measures the pixel-wise motion sim-
ilarity between two frames. To get knowledge of motion
in frames, inspired by [12], we use optical flow as the
motion feature. Thus, a possible and straightforward way
we can measure the motion differences is using optical flow
directly. Nonetheless, as aforementioned, various motions
of multiple objects in frames cause challenging to define the
consistency between them. We therefore learn the motion
feature by mapping optical flow domain to image domain.
In other words, given two frames, we use the corresponding
the optical flow of these frames to construct the instance
in image domain, dubbed pseudo-image. A pseudo-image
is made by the major motions in the corresponding frame
and the correlated motion of frame-pair. We finally calculate
the distance of pseudo-images to measure how smooth the
motion changes in a transition. A smaller PMSM reveals a
smooth transition. Consequently, we use PMSM to configure
the constraint in this distillation layer, so-called Ct, to con-
trol the motion in adjacent frames not to change frequently
or drastically.

Fig.4 outlines the flowchart of PMSM. For each node Vk

in the set S1, we treat it as a hypothesized adjacent node
of Vc. And xc, xk respectively are the corresponding frames
of node Vc, Vk. The smoothness of transition from frame xc

to xk is now defined by the motion distance of two optical

http://graphics.csie.ncku.edu.tw/SDPF/LMS.mp4
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flows FC and FK, where FC is the optical flow of frame xc to
its backward adjacent frame in the input video. The reason
for the order of this calculation is explained in detail in our
supplementary. Similarly, FK is the one of xk.

With two optical flows FC and FK, we first normalize
their magnitude by Eq.(9), denoted as F̂C, F̂K, respectively.
We then define a map of significant motions with:

Mij = max(F̂Cij , F̂Kij), (13)

with i = 0 . . .W , j = 0 . . . H ; W,H is the width and
height of the frame, respectively. The map M represents
for the correlation of major motions in frame-pair. We get
these information to learn how to control the pixel-wise
consistency in the pseudo-images.

Fig. 4: Flowchart of our proposed PMSM.

In each normalized optical flow F̂C, F̂K, we count the
number of elements that are larger than a threshold µ. We
denote as E = {e1, . . . , eNe

}. Note that the size of set E
varies along F̂C or F̂K. Since we only use Ne optical flows in
F̂ to model Ct, value of Ne should be large enough. A small
Ne will decrease the difference between optical flows. This
yields to that we may fail to define the difference correctly.
Therefore, if Ne is smaller than a threshold, i.e., 224 is the
height and width of frames, we will cut µ in a half and
compute µ again to ensure Ne is sufficient. Initially, we set
µ to 1

2 .
Thereafter, we rely on M, E to map back to the input

optical flow to construct pseudo-image. More specifically,
∀i, j in optical flow Fij = (xij , yij), pseudo-image Xp ∈
RH×W×3 is expressed as:

Xp
ij =

{( xij

2∥Fij∥2
+ 1

2 ,
yij

2∥Fij∥2
+ 1

2 , 1
)
, ifM≥ ek(

1
2 ,

1
2 , 0
)
, ifM < ek

, (14)

where ek is the largest element of E in M. In Eq.(14),
if the parameters are M, Ec, and F̂C, we can construct
pseudo-image of node Vc, denoted as Xp

c . Similarly, we can
get the pseudo-image Xp

k from those of node Vk. The first
two channels in Xp are the unit vector of F with constant
translation, in which unit vector provides only direction
information. The constant translation makes the value to be
in range of [0, 1] without any computation error. The third
channel is used to enlarge the difference between the feature
point and other pixels.

At the end, motion distance of two optical flows is
formulated as the similarity of the corresponding pseudo-
images:

δ(FC,FK) = − ∥ R(Xp
c)−R(X

p
k) ∥2, (15)

where R(.) indicates our trained RSFNet. In essence,
pseudo-images have different appearance compared to
video frames, i.e., pixel value represents for the motion

intensity of objects in the corresponding frame. Encoding
such pseudo-image serves the knowledge of the regions that
have considerable motions. It’s worth noting that motion
distance of two frames in Eq.(15) also could be expressed
by the similarity of pseudo-images. However, to make δ(.)
stable when working on diverse motions, we feed them to
RSFNet. Although RSFNet is trained on video frames data,
RSFNet on the other hand learn a similarity function to see
if two images are the same. This enables to discriminate
new classes of data without training the network again. We
give out discussion and visualization on these effects in the
supplementary file.

Equation (15) represents the relation adjacent frames in
term of motion change degree. For each node Vk in the set
S1, k = 0, . . . , n1, we define constraint Ct as:

δ(FC,FK) ≤ ω, (16)

where ω is set by:

ω =

{
1
n1

∑
k∈S1

δ(FC,FK), if n1 ≥ 2

min
(
δ(FC,A1), δ(FC,A2)

)
, if n1 < 2

, (17)

here A1 and A2 are the augment form of FC, i.e., A1 is the
rotation of FC with angle 1

2π and A2 is the rotation of FC
with angle − 1

2π. We set ω as the average difference of S1
is intuitive. However, the average will loss its function if
the number elements in S1 is less than 2. Therefore, we
calculate the difference between FC and the rotation of itself
to ensure the direction of the motion is sufficiently smooth.
We analyze the effectiveness of this constraint by the ablated
results in later session A.3.2.

In summary, the constraint model of distillation in this
layer can be factorized as:

Cd

(
Vc, Vk

)
+Ct

(
Vc, Vk

)
, (18)

where Vk ∈ S1. In the cases that Vc does not belong to LMS
or there does not exist a candidate in S1 that belongs to LMS,
the first factor in this equation is omitted. In other words,
we define the candidates that we can add to the path as:

S2 =

{
Cd

(
Vc, Vk

)
+Ct

(
Vc, Vk

)
, if Vc ∈ LMS

Ct

(
Vc, Vk

)
, otherwise

(19)

5.2.3 Final selection
Thus far, the candidates in S2 are the possible nodes we
can choose to explore. In the cases that S2 is empty, the
algorithm will early stop to maintain the quality of resultant
clips. If S2 > 1, we adopt Softmax parameterization protocol
[8] to converge the selection in each iteration. Let δj be the
motion distance from a node Vj ∈ S2 to Vc, we parameterize
the possibility of choosing Vj as:

Ω(Vj |S2) =
exp(δj)∑n2

i=1 exp(δi)
, (20)

where n2 denotes the number of candidates in S2, δi is the
motion distance of node Vi and Vc. This equation is used
to compute the possibility of a vertex to be chosen. Then,
we select the adjacent node of Vc according to randomly
choose the possibility Ω. It’s worth pointing that choosing
any candidates in S2 is sufficient to guarantee smooth and
plausible sequence. However, we aim to explore the novel
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path, we thus utilize Eq.(20) to increase the possibility of
sequencing novelty rather than choosing the smallest edge-
weight node. Furthermore, this strategy enables users to
have more predictable results. The efficiency of this design
is visualized by video results in the supplementary video.

6 EXPERIMENTAL RESULTS

6.1 Implementation Details

We implemented our proposed resequencing system in
Tensorflow [1]. All experiments were performed on a PC
equipped with Intel Core i7-770 CPU, 16GB RAM and an
NVIDIA GTX 1070 GPU. The User Interface (UI) is devel-
oped by QT toolkit [4]. We train our model with patch size
of 8. Adam optimizer [15] is used. Early-stopping with 10
epochs patience is used to prevent over-fitting. To reach the
minimum of loss, we cut the learning rate in half when the
validation loss does not improve in 3 epochs.

6.2 Our results and discussion

Fig.5 exhibits the frames of some typical videos in our
experiments. Readers are encouraged to explore our project
website2 to access more visual results. The aspects that
make our results and system advance prior works could
be summarized as follows.

We are capable of resequencing both cartoons (Fig.5-(A)
to (G)) and natural videos (Fig.5-(H) to (L)). Cartoon images
often consist of sharp lines, flat backgrounds, and smooth
color blocks, while natural images contain more complex
and local textures [2]. This ability is adopted by benefiting of
the proposed RSFNet and the distance loss. RSFNet boosts
the performance of our system in understanding high-level
features of natural images; meanwhile, the distance loss
facilitates the accuracy of image feature-pairs similarity.

We are capable of resequencing the clips, which consist
of complex motions, i.e., the motion of multiple objects or
dense motion directions. This aspect is adopted by the Mo-
tion Direction-Aware Distillation in our SDPF algorithm. As
examples, let us take Fig.5-(F) and Fig.5-(G). The challenge
here is that both cases consists of multiple simultaneous
motions. In Fig.5-(G), we have to control the consistency
of movements of two objects: 1) the direction when the bear
raises his hand to hold the flower and rotates it, and 2) the
other flower waves with the wind. Meanwhile, in Fig.5-(F),
such a resequenced clip should maintain the consistency of
the movements of the lady, baby, the car, and the windshield
wipers. Nevertheless, we can generate appealing results,
i.e., we re-sequence the new clips without damaging the
coherency and flicking artifacts. The challenge also falls in
the natural scenes here. These samples encompass linear
motion segments, which cause resultant sequences to be a
flip-flop phenomenon. Thanks to the constraints embedded
in our SDPF, we revolve this challenge and produce smooth
transitions.

Another interesting aspect of our system is the ability
to produce the sequences which are different to those in
the given clip. This aspect is adopted by the Content-Aware
Distillation in our SDPF Algorithm. More specifically, we

2. http://graphics.csie.ncku.edu.tw/SDPF

visualize the filmstrips of two paths which are from the
original video and our result in Fig.6. We can see with the
same image gallery, but our sequence is quite different from
those in the input video. By observing this resequencing
result, we can see the transition of each single frame pair is
plausible. The full clips can be seen in our supplementary
videos.

In addition, we can generate different sequences accord-
ing to the starting frame, which the user selects. This aspect
enables users to obtain various predictable results. Fig.6 is a
sample. More results can be seen on our project website. By
observing the filmstrips in the figure, the sequence gener-
ated by our method is not only relatively different from the
source sequence but also smooth in transitions.

Fig. 5: Frames in some of the videos we use to evaluate our
method.

Fig. 6: Demonstrates the differences in the sequence generated
by our method versus those in the original video. Shown in this
figure are the filmstrips from original video (first row) and our
rendered video (second row).

Fig. 7: Visualizes the heatmap of differences of frames.

6.3 Evaluation Metrics
To evaluate the performance of the proposed method, we
measure the generated sequences with three aspects: (1) the
stability of videos, (2) the difference degree of generated
sequences, and (3) human perception on our results. In
this evaluation manner, we totally use 12 videos (shown
in Fig.5), which are rendered from our system. Then, we
synthesize them for the below evaluation metrics.

6.3.1 E.1. Stability measurement
As the generated videos are explored according to the user’s
selection of the starting frame, they may not have the

http://graphics.csie.ncku.edu.tw/SDPF/
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ground truth. To measure the stability of rendered videos,
we synthesize 12 videos by our method and the correspond-
ing source video; and measure the differences between
adjacent frames. The reason is that the source videos by
themselves are temporally coherent; our results are rendered
from the same image set with them but probably in different
orders. Thus, we treat them as the standard to judge the
stability degree of the results.

Given two adjacent frames Ft−1 and Ft, difference of
them is factorized as:

Dt→t−1 =∥ Ft − Ft−1 ∥, (21)

here t ∈ [0 . . . Ns], Ns is the total frames in the video.
After that, we calculate the mean (MD) of Dt→t−1, and we
compare them against those in the source video. On each
single pair, Dt→t−1 in our result might be higher than those
in the ground truth, but it should be at an acceptable rate
to guarantee there does not exist notable flicking artifact.
This eventually affects the quality of the entire rendered
clip. Therefore, we base on MD to judge the stable quality
of the results, i.e., the more tightly asymptotic to those in
the source is better. We visualize an example of this manner
in Fig.7. In this visualization, we choose a mutual frame
between our rendered clip and the corresponding source
video (i.e., frame 9). We can observe that the adjacent frames
of frame 9 in the source (i.e., frame 11) and the adjacent
candidates (i.e., frames 16 and 34) are in the same motion
direction, but the heatmaps show that D9→16 is closer to
D9→11 than D9→34. This result reveals that the transition
from frame 9 to 16 is better among two potential candidates
than to frame 34, i.e., there could be a noticeable jumping
artifact in the transition from frame 9 to 34 in this context.
The average of MD in this experiment is reported in Fig.8-
(a). The analysis shows that the stable rates of our rendered
clips are relatively close to those in the source video. There
are three cases (e.g., clip A, C, and F) in which the stable
rates are relatively higher than the source. However, they
are still at acceptable rates.

6.3.2 E.2. Degree of differences
It is difficult to find a standard objective metric to measure
the differences of the generated sequences compared to
the input ones. Therefore, in this regard, we elaborate as
follows.

We evaluate how different the rendered clips compared
to the ground-truth by calculating the overlapping rate
between them. To do this, we follow the well-known F-
measure [16] as the evaluation metric. Previous works use
this metric to measure the coherency of the rendered videos.
The higher F-measure is, the higher the coherent rate will
be. Reversely, our purpose is to measure how different they
are. To avoid confusion, we denote this value as ∆o. As a
result, the smaller ∆o represents the more difference. Note
that the clips generated by our system may be of different
lengths and also less than those of the source clip. Let G be
the generated clip and T be the corresponding source clip,
the precision P and recall R is defined based on the amount
of temporal overlap between G and T , which are expressed
as:

P =
δ

dG
and R =

δ

dT
, (22)

where δ is the duration of overlap between G and T ; dG
and dT denotes the duration of clip G and T , respectively.
Finally, ∆o is formulated as:

∆o =
2× P ×R

P +R
× 100%, (23)

Quantitative results on this aspect are shown in Fig.8-(b).
We can see that ∆o of the testing data are relatively different
from the ground-truth, especially on the clip D-Frog dance.
It is worth pointing that the significant difference in this
manner does not mean the clip is not stable. Inferring this
clip in Fig.8-(a), the results reveal that the sequence this
clip is still stable. There are three cases (e.g., clip H, I, and
J) where the different rate is low. This implies that these
results are not significantly different with the ground-truth.
The reason is that these cases consist of linear motion in
the entire video. Therefore, our method can only generate
the smooth sequence as the ground-truth in such cases. In
addition to these metrics, we conduct a user study to further
learn about the human preferences on the visual quality
of our results. Detail of the user study is described in the
supplementary file.

In summary, if we denote the total number of linear
motion segment in a certain source video is L, the quality on
these two aspects of the rendered clips is defined as follows.
The stability (MD) is covariate with L and the differences of
sequence (∆o) is inverse with L.

6.3.3 E.3. Human perception-based evaluation

In addition to the above measurements, we further use
human visual perception on the sequences generated by
our method. Seven testing clips with small ∆o are used
in this evaluation. We first collect two summarization per
sequence. Then we recruit a group of 11 users rank (in five
levels) the summarization based on how well they describe
the clip according to two questions. The detail of this study
is described in the supplementary file.

For each question, let s be the score if the ith user rates
for the corresponding level of s and Ns be the number of
rating of s. We use the following equation to compute the
rate of each summarization to each question, which reflects
the users’ opinions:

RA =

( 5∑
s=1

s×Ns

)
/(5× 11) (24)

We then average RA of two summarizations for each se-
quence to define the users’ opinion. Fig.8-(c) shows the
statistics of users’ preference. We can see that the scores of
two questions are not extremely high but all of them are
over the average degree (i.e., in range of 0.62 - 0.79, and 64%
is greater than 0.7). The results reveal that most users think
the sequences generated by our work can tell meaningful
stories.

6.4 Comparisons to prior works

We compare our system with some seminal works in this
domain, including de Juan and Bodenheimer [3], Yu et al.
[28], Yang et al. [26], and Morace et al. [17]. The different
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Fig. 8: Analysis results on (a) stability, (b) difference degree, and (c) human perception on our resequencing results.

aspects in comparisons are summarized in Table 1. In gen-
eral, the early works [3, 28, 26] share the same two short-
comings: first, their mutual focus is the cartoon characters,
and second, they need to do a pre-processing to extract the
cartoon characters from the frames. Manifold method [17]
is more general, i.e., it does not need such a pre-processing
and thus, it is adaptable to cartoon scenes. However, they do
not consider the motion direction as the other competitors
[3, 28, 26] do, clips with dense motion directions are the
major limitation in their system. In shape contrast, our
approach has three major advantages. First, our system
performs well on arbitrary input video scenes. Second, our
system does not need any pre-processing. And third, our
system is able to produce novel animations compared with
those in the given video. The remainder of this subsection
describes detailed comparison on each single competitor.

Fig.9 shows a qualitative comparison between our re-
sults and those in de Juan and Bodenheimer [3]. The pair
of frames in (b) is mentioned as a bad transition in [3].
As a result, they have to insert inbetweens to obtain good
transition. In contrast, our method automatically defines the
adjacent frame with a smooth transition without refinement.
It is observed that our transition in (a) is more plausible
compared to (b).

Similar to our approach, Yang et al. [26] consider motion
direction in transitions. The significant difference here is
that they focus on cartoon characters. Gesture of charac-
ters needs to be extracted to define the similarity between
frames (see Fig.7 in the supplementary file). Moreover, the
motion direction feature (MDF) cannot accurately describe
the gesture of a cartoon character. Thus, their approach is
not effective to explore the challenging input. Reversely,
our system gets knowledge from self-defined network to
learn the similarity of images in terms of content correlation
and embeds optical flow to maintain consistency in motion
directions. Therefore, we advance not only in arbitrary input
but also in accuracy.

Fig.10 shows the comparison with Morace et al. [17]. The
source clip of this example consists of dense motions of fish
and chinese ink, in which there exist several linear motion
segments. As in our early discussion, since Morace et al. [17]
do not consider the motion direction, there is significant
abrupt motion in the regions masked in red rectangles.
Fortunately, thanks to the constraints in our scheme, we
resolve this phenomenon and obtain smooth transitions in
the generated sequence. Another aspect makes [17]’s system
suffer some limitations (i.e., image content is complex) is that
they use LPIPS metric to define the similarity of image pairs.
This metric is learned by training a “small network” which

is designed to predict perceptual judgement from distance
pair and not originally designed for resequencing applica-
tion. Besides, it takes approximately 5 seconds to compute
on a pair. Therefore, the performance of [17] heavily relies
on those in this model.

TABLE 1: Comparisons between our method and prior works

Methods Pre-processing New sequence? Type of data

GCCS [3] Yes No Cartoon characters

RCCS [26] Yes No Cartoon characters

semi-MSL [28] Yes No Cartoon characters

Manifold [17] No No Cartoon scenes

Our method No Yes Arbitrary scenes

Fig. 9: Visualizes the differences in transition between our
method (a) and [3] (b). Photos in (b) are obtained from [3].

Fig. 10: Comparisons with Manifold sequence [17].

Fig. 11: Second row is the Grad-CAM visualization of the
backbone VGG-19 (left) and our RSFNet (right).

Apart from the above visual comparisons, we quantita-
tively compare the quality of our results against those of
prior work by two metrics MD and ∆o. We also use the
data in Fig.5 in this comparison. And our competitor is
Manifold [17] since the other three methods [3, 26, 28] focus
on cartoon characters, and their results are not available
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for a fair comparison. Meanwhile, Manifold [17]’s focus is
comparable to ours, and the source code is provided by
the authors. Table 2 presents the statistic results in this
comparison. We can see that our method outperforms on
the average of stability score. In terms of ∆o, Manifold and
ours have the comparable scores. However, we can see that
their values of ∆o are relatively equal, and the score in
cartoon data (A-G) are higher than natural scenes (H-K).
When we inspect MD of data A-G, they are not at good
stability degree. This reveals that Morace et al. [17] fail to
either generate new sequences for cartoon data or produce
smooth sequences with linear motion in natural scene data.
Conversely, in our method, smaller ∆o on cartoon data
implies that it can explore new sequences. For the natural
scene data with linear motion, higher ∆o side by side with
smaller MD reveal that it can tolerate to avoid flip-flop
phenomenon in such data.

6.5 Ablation Study
6.5.1 A.1. Verify the effectiveness of RSFNet
Our RSFNet is structured in the integration of a backbone
and the proposed RFF module. Without RFF module, gen-
erated sequences include inconsistencies due to the lack
of information on the features that are extracted from the
backbone. We demonstrate the effectiveness of RFF module
by removing it from our training. We show these abla-
tion analyses in Fig.11. Here, we visualize the Grad-CAMs
[22] of those obtained from our RSFNet with and without
RFF module. The results show that with FRR module, our
RSFNet has much larger attended regions. This enables our
system to have more predictable results.

6.5.2 A.2. Study on the impact of distance metric
Performance of our resequencing system is affected by the
feature correlation calculation. To analyze the influence of
feature correlation on the quality of rendered sequences,
we change the model to calculate the distance metric by a
pure Euclidean distance calculation. That is, we remove the
distance loss (e.g., Eq. (4)) and use the Euclidean distance
to measure the correlation in pairs of latent vectors. Fig.12
shows the contrast results. It is observed that Euclidean dis-
tance metric performs the correlation of the neighbors well.
For example, we inspect on frame 5, which is highlighted
in green rectangle. We can see that most similar frames are
adjacent frames of this frame (e.g., frame 4, 5, 7). Meanwhile,
our distance is able to capture more (e.g., frame 1, 2, 3,
4, 5, 12, 20). Therefore, if we directly use Euclidean as the
distance metric, it prevents us from exploring new paths.

6.5.3 A.3. Study on constraints in SDPF
A.3.1. Directional distillation. This constraint is configured
to detect the motion’s property of a certain frame. As we
mentioned in previous session, the “property” here is the
linear motion. To verify the impact of this constraint (Cd)
in the results, we remove it from the full procedure. That
is, Cd is omitted from Eq.(18). Fig.13 shows the results of
ablation analysis. In this example, we deliberately choose a
frame (i.e., frame 187) that belongs to such a linear motion
segment to clearly reveal the influence of this constraint.
After the first distillation, we define five candidates that

have feature correlation to frame 187. Among them, frame
152 does not belong to LMS, meanwhile, the remainders
are. In the remained candidates, frame 121 and 144 are in
reverse direction motion with frame 187, and frame 193
is the same direction with frame 187. Without constraint
Cd, frame 152 and 135 are selected as being adjacent with
frame 187. Obviously, the flip-flop phenomenon will occur.
Reversely, with constraint Cd, frame 193 is chosen. This
result yields a reasonable transition.

TABLE 2: Comparisons on the quality of results

Methods Ground-truth Morace et al. [17] Our method

Testing data MD MD ∆o MD ∆o

A- Lovebird 0.037 0.056 0.78 0.047 0.67

B- Daffy Duck 0.048 0.067 0.84 0.052 0.64

C- Hippo funk 0.046 0.062 0.81 0.058 0.63

D- Frog dance 0.048 0.079 0.77 0.054 0.59

E- Michigan 0.060 0.062 0.79 0.065 0.64

F- Umbrella 0.059 0.083 0.69 0.067 0.72

G- Little doctor 0.048 0.073 0.73 0.051 0.70

H- Basket ball 0.047 0.081 0.58 0.049 0.88

I- River flow 0.051 0.075 0.75 0.052 0.92

J- Harry Porter 0.053 0.078 0.68 0.056 0.87

K- Chinese ink 0.049 0.052 0.73 0.056 0.78

L- Movie Scene 0.058 0.065 0.74 0.060 0.79

Average 0.050 0.069 0.74 0.055 0.73

Fig. 12: Zoom-in the heat map of distance metric calculated
by Euclidean distance (a) and our learning-based Euclidean
distance (b). The experiment is conducted on segment with 20
frames of Daffy Duck clips. Entire heat maps could be seen in
Fig.6 in the supplementary file.

Fig. 13: Ablated results of constraint Cd. Five candidates in
S1 are correlated with frame 187. Because frame 187 belongs
to LMS, if S1 has LMS-frames, they will be considered to
guarantee the coherency with frame 187. With Ct, frame 193
is chosen. This is an LMS-frame, we can see the transition is
visual smooth. In the contrast case, both frame 152 and 135
do not belong to LMS, exploring to these frames may cause
artifacts.
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A.3.2. Coherent distillation. Without this constraint, the
motion in generated sequences can be realistic but may fail
in temporal coherence. We measure this effect quantitatively
by removing this constraint (i.e., Ct) from our proposed pro-
cedure. Fig.14 visualizes the ablated results in this aspect. It
is observed that without Ct, the adjacent frame of frame 143
is frame 172. In the contrast case, it is frame 149. Although
both frame 149 and 172 are the same direction motion with
frame 143, the heat maps reveal that the differences from
frame 143 to 172 is significant. This is the reason that causes
the jumping transition in the rendered clips without Ct.

Fig. 14: Ablated results of constraint Ct

TABLE 3: Analysis of the quality on ablated results

Method MD ∆o

Ground-truth 0.0535 1

w/o Ct 0.118 0.783

w/o Cd 0.079 0.827

w/o RSFNet 0.082 0.731

w/o Ld 0.281 0.816

Full configure 0.0648 0.706

In summary, we verify the effectiveness of RSFNet, dis-
tance loss, and two constraints (Cd, Ct) by testing on 12
videos in Fig.5. The analysis is shown in Table 3. From these
results, we can conclude that the each constraint plays an
important role for the stability of the rendered clips; the
distance metric and RSFNet affect to the ability in exploring
new sequences. Full configuration guarantees better quality
results.

6.6 Limitations
In the cases that the input videos consist of subtle motion
of landscape scenes (see the visualized sample here3), our
method may not perform well. The failure phenomenon
in such data is that the resultant sequence is quite short,
i.e., approximately 20% of the total number of frames in the
source video. We note here that these results are still smooth.
The reason is our SDPF utilizes the temporal coherency or
the velocity of motion in the source video to estimate the
adjacent frame in each single pair of frames. In such subtle
motion, the differences of the adjacent frames are small and
the motion is looped. Therefore, our SDPF will early stop if
the changes are relatively large to avoid cold transitions.

7 CONCLUSION

We propose a framework to create new animations from
cartoon and natural videos with plausible smooth motion.
We demonstrate that our novel path finding algorithm SDPF

3. http://graphics.csie.ncku.edu.tw/SDPF/Failure.mp4

is especially useful to create the novel animations and
control the consistency in generated clips. This gives our
system the capability of resequencing various video con-
tents with flexible sequences. We perceive that our system,
on the one hand, will be useful as an aid to charge with
generating new art in animation video, on the other hand,
allows ordinary users with minimal expertise to explore
compelling animations by reusing the existing video frames.
Our results and evaluations show that the proposed scheme
substantially advances prior works. For the drawback we
mentioned in our limitation session, we plan to investigate
such techniques to detect the bad transitions in the initial
sequence and make it smooth by a novel algorithm rather
than early stopping. Besides, this could be a possibility
to develop a GAN-based network architecture to produce
new images from existing image collection, and increase the
diversity of the results in the near future.
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